Curvilinear Micromagnetism: From Fundamentals to Applications

This book covers the theory of curvilinear micromagnetism as well as experimental study of curved magnets including both fabrication and characterization About: Zach Evenson “Magnetism Ahead of the Curve” Publication: Curvilinear Micromagnetism From Fundamentals to Applications, Denys Makarov, Denis D. Sheka (Editors), Part of the book series: Topics in Applied…

Continue reading

Field-induced spin reorientation transitions in antiferromagnetic ring-shaped spin chains

Easy axis antiferromagnets are robust against external magnetic fields of moderate strength. Spin reorientations in strong fields can provide insight into more subtle properties of antiferromagnetic materials, which are often hidden by their high ground-state symmetry. Here, we investigate theoretically effects of curvature in ring-shaped antiferromagnetic achiral anisotropic spin chains…

Continue reading

Circular stripe domains

Vertically stacked exchange coupled magnetic heterostructures of cylindrical geometry can host complex noncolinear magnetization patterns. By tuning the interlayer exchange coupling between a layer accommodating magnetic vortex state and an out-of-plane magnetized layer, one can efficiently realize new topological chiral textures such as cone state vortices and circular stripe domains.…

Continue reading

Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 Thin Films

Thin films of the magnetoelectric insulator α-Cr2O3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr2O3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application…

Continue reading

Fundamentals of curvilinear ferromagnetism: Statics and dynamics of geometrically curved wires and narrow ribbons

Low-dimensional magnetic architectures including wires and thin films are key enablers of prospective ultrafast and energy efficient memory, logic, and sensor devices relying on spin-orbitronic and magnonic concepts. Curvilinear magnetism emerged as a novel approach in material science, which allows tailoring of the fundamental anisotropic and chiral responses relying on…

Continue reading

Nematic shells: new insights in topology- and curvature-induced effects

Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrinsic curvature of the shell combined with the out-of-plane component of the director field gives…

Continue reading

New dimension in magnetism and superconductivity: 3D and curvilinear nano-architectures

Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging…

Continue reading

A perspective on curvilinear magnetism

By exploring geometry-governed magnetic interactions, curvilinear magnetism offers a number of intriguing effects in curved magnetic wires and curved magnetic films. Recent advances in experimental techniques change the status of curvilinear magnetism, allowing the exploitation of 3D curved nanomagnets in emerging devices with numerous applications. Here, we provide our Perspective…

Continue reading

Curvature-driven homogeneous Dzyaloshinskii-Moriya interaction and emergent weak ferromagnetism in anisotropic antiferromagnetic spin chains

Chiral antiferromagnets are currently considered for a broad range of applications in spintronics, spin-orbitronics, and magnonics. In contrast to the established approach relying on materials screening, the anisotropic and chiral responses of low-dimensional antiferromagnets can be tailored relying on the geometrical curvature. Here, we consider an achiral, anisotropic antiferromagnetic spin…

Continue reading

Boundary conditions for the Néel order parameter in a chiral antiferromagnetic slab

Understanding of the interaction of antiferromagnetic solitons including domain walls and skyrmions with boundaries of chiral antiferromagnetic slabs is important for the design of prospective antiferromagnetic spintronic devices. Here, we derive the transition from spin lattice to micromagnetic nonlinear σ model with the corresponding boundary conditions for a chiral cubic…

Continue reading