Boundary conditions for the Néel order parameter in a chiral antiferromagnetic slab

Understanding of the interaction of antiferromagnetic solitons including domain walls and skyrmions with boundaries of chiral antiferromagnetic slabs is important for the design of prospective antiferromagnetic spintronic devices. Here, we derive the transition from spin lattice to micromagnetic nonlinear σ model with the corresponding boundary conditions for a chiral cubic…

Continue reading

Nanoscale mechanics of antiferromagnetic domain walls

Antiferromagnets can encode information in their ordered magnetic structure, providing the basis for future spintronic devices. The control and understanding of antiferromagnetic domain walls, which are the interfaces between domains with differing order parameter orientations, are key ingredients for advancing antiferromagnetic spintronic technologies. However, studies of the intrinsic mechanics of…

Continue reading

Curvilinear one-dimensional antiferromagnets

Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin−orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically…

Continue reading

Curvature effects on phase transitions in chiral magnets

Periodical equilibrium states of magnetization exist in chiral ferromagnetic films, if the constant of antisymmetric exchange (Dzyaloshinskii-Moriya interaction) exceeds some critical value. Here, we demonstrate that this critical value can be significantly modified in curved film. The competition between symmetric and antisymmetric exchange interactions in a curved film can lead…

Continue reading

The 2020 magnetism roadmap

As a collective effort of leading experts from 10 different countries, the 2020 Magnetism Roadmap, which is an Open Access article, is intended to provide a reference point and guide to the interested community on relevant and emerging research directions in modern magnetism. The article consists of 14 sections, each…

Continue reading

Effect of curvature on the eigenstates of magnetic skyrmions

Spectrum of spin eigenmodes localized on a ferromagnetic skyrmion pinned by a geometrical defect (bump) of magnetic films is studied theoretically. By means of direct numerical solution of the corresponding eigenvalue problem and finite element micromagnetic simulations we demonstrate that the curvature can induce localized modes with higher azimuthal and…

Continue reading

Micromagnetic Theory of Curvilinear Ferromagnetic Shells

The concept of curvature and chirality in space and time are foundational for the understanding of the organic life and formation of matter in the Universe. Chiral interactions but also curvature effects are tacitly accepted to be local. A prototypical condensed matter example is a local spin-orbit- or curvature-induced Rashba…

Continue reading

Unidirectional tilt of domain walls in equilibrium in biaxial stripes with Dzyaloshinskii–Moriya interaction

The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii-Moriya interaction…

Continue reading

Domain wall diode based on functionally graded Dzyaloshinskii-Moriya interaction

Domain wall diode

We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii–Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter, we propose the concept of a diode, which implements the filtering of domain walls of a certain topological charge…

Continue reading

Spontaneous deformation of flexible ferromagnetic ribbons induced by Dzyaloshinskii-Moriya interaction

Here, we predict the effect of the spontaneous deformation of a flexible ferromagnetic ribbon induced by Dzyaloshinskii-Moriya interaction (DMI). The geometrical form of the deformation is determined both by the type of DMI and by the equilibrium magnetization of the stripe. We found three different geometrical phases, namely, (i) the…

Continue reading