A perspective on curvilinear magnetism

By exploring geometry-governed magnetic interactions, curvilinear magnetism offers a number of intriguing effects in curved magnetic wires and curved magnetic films. Recent advances in experimental techniques change the status of curvilinear magnetism, allowing the exploitation of 3D curved nanomagnets in emerging devices with numerous applications. Here, we provide our Perspective…

Continue reading

Curvature-driven homogeneous Dzyaloshinskii-Moriya interaction and emergent weak ferromagnetism in anisotropic antiferromagnetic spin chains

Chiral antiferromagnets are currently considered for a broad range of applications in spintronics, spin-orbitronics, and magnonics. In contrast to the established approach relying on materials screening, the anisotropic and chiral responses of low-dimensional antiferromagnets can be tailored relying on the geometrical curvature. Here, we consider an achiral, anisotropic antiferromagnetic spin…

Continue reading

Boundary conditions for the Néel order parameter in a chiral antiferromagnetic slab

Understanding of the interaction of antiferromagnetic solitons including domain walls and skyrmions with boundaries of chiral antiferromagnetic slabs is important for the design of prospective antiferromagnetic spintronic devices. Here, we derive the transition from spin lattice to micromagnetic nonlinear σ model with the corresponding boundary conditions for a chiral cubic…

Continue reading

Nanoscale mechanics of antiferromagnetic domain walls

Antiferromagnets can encode information in their ordered magnetic structure, providing the basis for future spintronic devices. The control and understanding of antiferromagnetic domain walls, which are the interfaces between domains with differing order parameter orientations, are key ingredients for advancing antiferromagnetic spintronic technologies. However, studies of the intrinsic mechanics of…

Continue reading