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Amplitudes for magnon scattering by vortices in two-dimensional weakly easy-plane ferromagnet
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We study magnon modes in the presence of a vortex in a circular easy-plane ferromagnet. The problem of
vortex-magnon scattering is investigated for partial modes with different values of the azimuthal quantum
numberm over a wide range of wave numbers. The analysis was done by combining analytical and numerical
calculations in the continuum limit with numerical diagonalization of adequately large discrete systems. The
general laws governing vortex-magnon interactions are established. We give simple physical explanations of
the scattering results: the splitting of doublets for the modes with opposite signs ofm, which takes place for the
long-wavelength limit, is an analog of the Zeeman splitting in the effective magnetic field of the vortex. A
singular behavior for the scattering amplitudesm}k takes place ask diverges; it corresponds to the generalized
Levinson theorem and can be explained by the singular behavior of the effective magnetic field at the origin.
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I. INTRODUCTION

It is now firmly established that vortices play an importa
role in condensed-matter physics of two-dimensional~2D!
systems with continuously degenerate ground states. In
ticular, the presence of vortices in 2D easy-plane~EP! mag-
nets gives rise to the Berezinski�-Kosterlitz-Thouless phas
transition.1–3 Vortices play an essential role in the therm
and dynamical properties of 2D magnets, for a review
Ref. 4. A vortex signature in dynamical response functio
can be observed experimentally; e.g., translational motio
vortices leads to a central peak in the dynamical correla
functions.5 This peak had been predicted both by a vor
gas theory and by combined Monte Carlo spin dynam
simulations.6

Recently there has been renewed attention to the prob
of magnetic vortices for finite-size magnetic particles, es
cially their dynamics. It becomes very important in conne
tion with novel composite magnetic materials such as m
netic dot arrays.7–13 These magnetic dots are submicro
sized islands made from soft magnetic materials on
nonmagnetic substrate. They are important from a pract
standpoint as high-density magnetic storage devices,14 and
are interesting as fundamentally new objects in the ba
physics of magnetism. The distribution of magnetization
such a dot is quite nontrivial: when the dot size is abov
critical value, an inhomogeneous state with an out-of-pla
magnetic vortex occurs, which is stable due to comp
tion between exchange and dipole interactions.15 It is ex-
pected that these nonuniform states will drastically cha
the dynamic and static properties of a dot in compa
son with a uniformly magnetized magnetic disk. Rece
0163-1829/2004/69~5!/054429~13!/$22.50 69 0544
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experiments16,17 verify such properties; in particular, a mod
with anomalously low frequency was detected,17 see also
Refs. 18 and 19.

The general properties of vortex dynamics are intimat
connected to the problem of vortex-magnon interactio
Usually this problem has been studied numerically for d
crete models, mainly for circular samples cut from large l
tice systems.20–27An analytical description of the problem i
the framework of the continuum model has been propo
recently for different 2D magnets.24,28–31The most important
effect of the vortex-magnon interaction is an excitation
certain magnon modes due to vortex motion and vice ve
Because the magnons in the EP ferromagnet have a ga
dispersion law, a possible Larmor dynamics of the vor
center is strongly coupled with a magnon cloud;26 therefore
the corresponding motion has a non-Newtonian form.24

In this paper we consider the magnon modes which e
in a 2D Heisenberg EP ferromagnet in the presence o
vortex. We apply different methods of analytical and nume
cal investigation, in order to extend the research of Ref.
presenting a wider range of results for the magnon scatte
amplitude. In Sec. II we demonstrate that the vortex acts
magnons in two ways. First of all, it provides for couplin
between different directions of magnetization precession;
magnon modes are described by a ‘‘generalized’’ Sch¨-
dinger equation. Second, the problem naturally possesse
effective magnetic field, whose global properties are cau
by the soliton topological charge. The scattering problem
treated both numerically and analytically for a wide range
wave numbers. The numerical study is carried out using
different approaches: solving the eigenvalue problem for
continuum limit ~in the weak EP anisotropy limit!, and ex-
©2004 The American Physical Society29-1
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tracting the scattering data from numerical diagonalization
discrete systems, see Sec. III. The analytical study of
scattering problem is developed~Sec. IV! using both the
long- and short-wavelength approximations. In contrast
the previous work24 we describe analytically the splittin
phenomenon of the doublets of magnon modes with oppo
signs of the azimuthal quantum number, and give a phys
picture of this effect: an effective magnetic field causes
Zeeman splitting of the magnon levels, see Sec. IV A. T
singular behavior of the scattering amplitude is predicted
Sec. IV B for the short-wavelength limit. This feature
caused by the specific singular effective magnetic field at
origin ~vortex core!; this study verifies the generalized ve
sion of the Levinson theorem, which we have establish
recently in Ref. 32 for potentials with inverse square sing
larities.

II. MODEL AND MAGNON MODES

We consider the classical 2D Heisenberg ferromag
~FM! with the Hamiltonian

H52J (
(n,n8)

@Sn•Sn82~12l!Sn
zSn8

z
#, ~1!

where the spinsSn are classical vectors on a square latt
with the lattice constanta. Here (n,n8) denotes nearest
neighbor lattice sites,J.0 is the exchange integral, andl
P@0,1) describes easy-plane anisotropy.

We consider the continuum dynamics of the Heisenb
ferromagnet, which is adequate for model~1! in the small-
anisotropy case (12l!1). In a continuum limit the dynam
ics of the FM is described by Landau-Lifshitz equations
the normalized magnetization

m~r,t !5
S~r,t !

S
5~sinu cosf;sinu sinf;cosu!. ~2!

The equations of motion result from the Lagrangian

L5
S

a2E d2x~12cosu!
]f

]t
2E@u,f#, ~3!

with the energy functional

E@u,f#5
JS2

2 E d2xF ~“u!21~“f!2 sin2u1
cos2u

r v
2 G .

~4!

Here r v5(a/2)Al/(12l) is the characteristic length sca
~‘‘magnetic length’’!. One should note that the strength of t
weak easy-plane anisotropy (l'1), determines the mag
netic length scaler v ; in this continuum analysis, results wi
depend on lengths scaled byr v , and have no explicit depen
dence on the anisotropy strength.

The ground state of the magnet is continuously degene
and isotropic within the EP. The simplest elementary lin
excitations of EP FM’s that arise on the homogeneous ba
ground are the magnons belonging to a continuous spect
They have the form of elliptically polarized waves; if on
05442
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chooses the homogeneous spin distribution along thex axis,
then the spin wave takes the form

mx51, mz1 imy

krv

A11k2r v
2

}exp~ ikx2 ivt !. ~5!

The dispersion law has the gapless form

v~k!5ckA11k2r v
2, ~6!

wherec52aJSA12l is the characteristic magnon speedk
is the magnon wave vector, andk5uku is its magnitude.

The simplest nonlinear excitation in the system is an o
of-plane vortex33,34

f[f05w01qx, u5u0~r!,
~7!

u0~0!5
12p

2
p, u0~`!5p/2,

wherew0 is an arbitrary angle due to the EP symmetry,r
[uru/r v and x are dimensionless polar coordinates in t
plane of the magnet, the vorticityqPZ plays the role of ap1
topological charge, and the polarizationp561 is connected
with a p2 topological charge~the Pontryagin index!

Q5
1

4pE Qd2x, Q5
1

2
e i j m•~] im3] jm!. ~8!

We termQ the gyrocoupling density, following Thiele;35 it
has a sense as the density of the topological charge,
Papanicolaou and Tomaras.36 For the vortex configuration
~7! the gyrocoupling density can be represented as

Q5
q sinu0u08

r
, ~9!

hence the Pontryagin index takes on half-integer or inte
values Q5qp/2. Note that the presence of a nontrivi
p2-topological charge directly results in the gyrotropical d
namics of the vortex, which conserves the gyrovectorG
5Q2p\Sa22ez .

The functionu0 is the solution of an ordinary differen
tial equation, which can only be solved numerically.34,37

Without an external magnetic field two oppositely polariz
vortices are energetically equivalent; for definiteness we
p511.

To analyze magnons on the vortex background, we us
formalism and set of coordinates developed in Ref. 21,
ting up the problem in terms of local Cartesian spin comp
nents. The unperturbed spins of the static vortex struct
m0, define local polar axese3, different at every site, spe
cifically, S0(r,t)5Se3.

It is to be understood that these axes depend on the
chosen. The magnetic fluctuations occur perpendicula
these local axes, suggesting the definition of other axese2
being chosen along the direction ofez3e3, ande15e23e3,
to complete the mutually perpendicular set. One suppo
that a dynamically fluctuating spin has small deviatio
along thee1 ande2 axes so that a spin is written as
9-2
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S~r,t !5S~e31m1e11m2e2!. ~10!

The fieldsm1 and m2 have a simple physical significanc
which can be seen if a given spin is supposed to have s
deviationsw and q away from the vortex structure, dete
mined by azimuthal and polar spherical angles,f0 and u0.
We write

S~r,t !

S
5cos~u01q!ez1sin~u01q!

3@cos~f01w!ex1sin~f01w!ey#. ~11!

Linearizing in w and q, and using the definitions o
$e1 ,e2 ,e3%, comparison of Eqs.~10! and ~11! shows that

m15q, m25w sinu0 . ~12!

Thus, them1 field measures spin rotations moving towar
the polar (ez) axis and them2 field measures spin rotation
projected onto thexy plane. In the absence of the vortex, w
haveu05p/2, f050, and such oscillations correspond
the free magnons in the form~5!.

The linearized equations form1 andm2 can be described
by a single complex-valued functionc(r,t)5m11 im2,
which obeys the differential equation

i ]tc5Hc1Wc* , H5~2 i“2A!21U, ~13!

with the ‘‘potentials’’

U~r!5
1

2
sin2u0S 12

q2

r2D 2cos2u02
u08

2

2
, ~14a!

W~r!5
1

2
sin2u0S 12

q2

r2D 1
u08

2

2
, ~14b!

A~r!52
q cosu0

r
ex . ~14c!

Here we use the dimensionless coordinate variabler
5uru/r v , dimensionless time variablet5tc/r v , and the op-
erator“5r v] r ; prime denotesd/dr.

Let us note that the vectorA acts in the Schro¨dinger-like
operatorH in the same way as the vector-potential acts in
Hamiltonian of a charged particle. Then it is possible to co
clude that there is an effective magnetic flux density

B5“3A5ez

q sinu0u08

r
. ~15!

Note that the effective magnetic flux density can easily
rewritten through the gyrocoupling density~9! as B5Qez .
Therefore the total flux is determined by the nontrivialp2
topology of the vortex configuration. On first view whe
exploiting this analogy it is possible to look for th
Aharonov-Bohm phenomenon for the scattering problem,
cause this magnetic flux density is localized in the region
the vortex core. However, one can see that the total magn
flux
05442
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F5E Bzd
2x54pQ5qpF0 ~16!

is an integer multiple of the flux quantumF052p, so there
is no Aharonov-Bohm scattering picture for the system.

A differential equation like Eq.~13! is not a unique prop-
erty of the vortex-magnon problem in the EP FM only.
appears for different kinds of anisotropy: it describes m
non modes on the soliton background in the easy axis30 and
isotropic magnets.29 Note that for the specific case of a
isotropic system with an exact analytical soliton solution
the Belavin-Polyakov type, the potentialW disappears, so the
magnon modes satisfy the usual Schro¨dinger-like equation
i ]tc5Hc, which describes, e.g., the quantum-mechani
states for a charged particle in the axially symmetric pot
tial U(r) under the action of an external magnetic field w
a vector potentialA.

For the anisotropic case, whenWÞ0, the problem~13!
has important unusual properties, which are absent for
Belavin-Polyakov case. More generally, there appear pro
ties which are forbidden for the usual quantum mechanics
particular, an effective discrete Hamiltonian of the system
not necessarily Hermitian; in Refs. 21, 22, and 25 some c
structive methods were elaborated to avoid these proble
Nevertheless we will discuss the features of Eq.~13! in order
to understand why the standard quantum-mechanical i
ition could fail.

The standard quantum-mechanical equationi ]tc5Hc
allows the conservation law]tucu252“• j for the current

j5 i ~c“c* 2c!
“c!12ucu2A. ~17!

The generalized Schro¨dinger-like equation~13! with WÞ0
violates this conservation law, namely,

]tucu252“• j2 iW~c* 22c2!. ~18!

Nonconservation of probability density has posed so
problems in the passage from standard quantum mecha
to old pre-Feynmann quantum electrodynamics. The rea
is that Eq.~13! is formulated neither for a Hermitian, nor
linear operator; the last statement is due to the broken s
metry under the rescalingc→lc with lPC. There exists an
analogy with relativistic theory: there can appear solutio
with positive and negative energy in the passage from
Klein-Gordon to Dirac equation. In fact, our problem has t
same origin. Let us reformulate the problem~13! as an equa-
tion second order in time. One can calculate that the Kle
Gordon-like equation

2]ttc5~H22W2!c ~19!

is valid far from the vortex center. What is important is th
Eq. ~19! contains a Hermitian operator~similar arguments
were used in Ref. 25!. Therefore, the eigenvalue proble
~EVP! for v2, not forv, is more appropriate for this system
the only problem is to separate solutions with positive a
negativev. Note, that there appear fourth-order operat
with respect to the space coordinate, which causes the p
ence of master and slave functions in the solution, see be
9-3
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Such a problem, as well as a problem with nonconser
number of particles~probability amplitude!, appears in the
theory of a weakly nonideal Bose gas. It results, in fact,
the separation of positive and negative energy solutions
der u-v Bogolyubov transformations.38

Following this scheme we need to generalize theu-v
transformation to the nonhomogeneous case.

We apply the partial-wave expansion, using the ansat24

c~r,t !5(
a

@ua~r!eiFa1va~r!e2 iFa#,

~20!
Fa~x,t !5mx2vat1hm5mx2Vat1hm ,

where a5(k,m) is a full set of eigenvalues,mPZ being
azimuthal quantum numbers, thehm are arbitrary phases
and V5vr v /c are dimensionless frequencies. This expa
sion leads to the following EVP for the radial eigenfunctio
u andv ~the indexa will be omitted in the following!:

HuC&5VuC&, H5 I H1 W

2W 2H2
I , uC&5 Iu

v
I .

~21!

HereH652¹r
21U011/26V is the 2D radial Schro¨dinger-

like operator with the potentials

U0~r!5U~r!1A21
m2

r2
2

1

2
5

q21m2

r2
2

3q2 sin2u0

2r2

2
3 cos2u0

2
2

u08
2

2
, ~22!

V~r!52
2m~A•ex!

r
5

2qmcosu0

r2
, ~23!

¹r
25d2/dr21(1/r)d/dr is the radial Laplace operator. I

spite of the fact that the EVP~21! is formulated for the
Schrödinger operatorsH6 , this EVP is different in principle
from the usual set of coupled Schro¨dinger equations, which
is widely used, e.g., for the description of multichann
scattering.39 The reason is that the matrix HamiltonianH is
not Hermitian for the standard metric, for details see Ref.
To avoid this problem we introduce a corresponding bra v
tor by the definition

^Cu5iu;2vi . ~24!

The Hilbert space for theC function has an indefinite metri

^CuC&5~uuu!2~vuv !, ~25!

where (uuv)5*0
`u(r)v(r)rdr is the standard scalar prod

uct. By introducing such a Hermitian product, it is possib
to define the standard energy functional~see Ref. 30!

E@u,v#5^CuHuC&5~uuH1uu!12~uuWuv !1~vuH2uv !.

~26!

Let us mention that Eq.~21! is invariant under the conju
gationsV→2V, m→2m, andu↔v. In a classical theory
05442
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we can choose either sign of the frequency; but in orde
make contact with quantum theory, with a positive frequen
and energyEk5\vk , we will discuss the caseV.0 (v
.0) only. Thus there are two different equations for t
opposite signs ofm. However, in the limiting case of the
‘‘zero modes’’ with V50, the system again is invariant un
der conjugationsm→2m. For example, one of the zer
modes, the so-called translational mode withm511, has
the form

um5115
sinu0

r
2u08 , vm5115

sinu0

r
1u08 , ~27!

which describes the position shift of the soliton. Because
the degeneration of the EVP atV50, it leads to the exis-
tence of a zero mode withm521; the eigenfunction of this
mode can be expressed just from Eq.~27! under the conju-
gation u↔v. We use here notations for mode indices as
Refs. 29 and 31; note that the mode withm511 corre-
sponds in our notation to the mode withm521 in the no-
tations of Refs. 24 and 30.

It should be stressed that the picture is quite different
the special caseW50, which corresponds to the isotrop
magnet.28,29 Here we have two uncoupled equations for t
functionsu andv. One of the equations~for the eigenfunc-
tion v) has the negative eigenvalue2V, from which it nec-
essarily results thatv[0. In this special case the zero mod
~27! have the formu11}u08 andv1150. Therefore the zero
mode withm521 cannot be obtained by the simple conj
gation. It explains the difference between the collective d
namics of the soliton in isotropic magnets, where it is enou
to take into account only the mode withm511, and the EP
FM, where translational modes withm521 and m511
must be taken into account. Nevertheless, the roles of
modes withm521 andm511 are not equal, for details
see Sec. IV C.

III. SCATTERING PROBLEM: NUMERICAL RESULTS

A. Continuum approach

We intend to describe the scattering of magnons b
vortex. However the EVP~21! is not adjusted for the scat
tering problem, because it does not provide the asympt
independence of the equations at infinity. To solve the pr
lem it is convenient to make a unitary transformation of t
eigenvectoruC&,

uC̃&5AuC&, A5 I cos« 2sin«

sin« cos«
I , uC̃&5I ũ

ṽ
I .

~28!

The angle« of this unitary transformation is defined by th
expression

tan 2«5
1

2V
. ~29!

Then we obtain the following partial differential equation f
the functionuC̃&:
9-4
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H̃uC̃&5LuC̃&, H̃5H01Ṽ, L5diag~k2;¸2!, ~30a!

H05diag~H0 ;2H0!, H052¹r
21U0 , ~30b!

Ṽ5@V1g~W21/2!#A22, ~30c!

whereg5i21 0
0 1i is a metric spinor, the dimensionless wa

number isk5krv , and¸5Ak211.
First let us consider the magnon spectrum in the abse

of a vortex ~free fields!. Without a vortex (q50,u05p/2),
Eqs.~30! are uncoupled, which results in free magnons,

ũm~r!}Jumu~kr! ;
kr@1

A 2

pkr
cosS kr2

umup
2

2
p

4 D ,

ṽm~r!50, ~31!

whereJm are Bessel functions. The free modesũm play the
role of the partial cylinder waves of a plane spin wave

exp~ ik•r2 ivt !5 (
m52`

`

i mJm~kr!eimx2 ivt. ~32!

To describe magnon solutions in the presence of a vor
one should note that far from the vortex center the poten
Ṽ tends to zero, so Eq.~30a! become uncoupled

~¹r
21k2!ũ50, ~¹r

22¸2!ṽ50, r@maxS 1;
1

k
;
1

¸ D
~33!

with asymptotically independent solutions:

ũm~r!;
C1

Ar
eikr1

C2

Ar
e2 ikr

}
1

Ar
cosS kr2

umup
2

2
p

4
1dmD , ~34a!

ṽm~r!;
C3

Ar
e¸r1

C4

Ar
e2¸r. ~34b!

The scattering results in the quantitydm[dm(k); it can
be interpreted as the scattering phase shift, determining
intensity of the magnon scattering due to the presence of
vortex. Sometimes it is useful to introduce the scattering a
plitude, sm52tan dm . Using this notation, the oscillator
solution ~34a! can be rewritten in the following form:

ũm~r!}Jumu~kr!1smYumu~kr!, ~34a8!

where Yumu are Neumann functions. Let us stress that
solution ~34a8! is valid only in the sense of the asymptot
form ~34a!. As it follows from Eq.~34b!, the functionṽ has
an exponential behavior
05442
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ṽm~r!}K umu~¸r!1gmI umu~¸r!}
e2¸r

Ar
1gm

e¸r

Ar
,

~34b8!

where K umu and I umu are MacDonald and modified Bess
functions, respectively; at the same timeũ yields oscillatory
solutions. Naturally, the real modes have an oscillatory fo
here; we will use this fact below for the numerical analys
It means that the functionũ becomes a master function i
Eq. ~30a!, while ṽ is a slave~note that we chooseV.0).
This mirrors the difference between Eq.~30a! and a usual se
of Schrödinger equations.

The scattering amplitude, or, equivalently, the phase sh
contains all information about the scattering processes
particular, the general solution of the scattering problem fo
plane wave can be expressed in the form, cf. Eq.~5!,

m22 im1

krv

A11k2r v
2

}eik•r2 ivt1F~x!
eikr2 ivt

Ar
, ~35a!

where the scattering function has the form29

F~x!5
exp~2 ip/4!

A2pk
(

m52`

`

~e2idm21!eimx. ~35b!

The total scattering cross section is given by the expr
sion

%5E
0

2p

uFu2dx5 (
m52`

`

%m ,

where%m5(4/k)sin2dm are the partial scattering cross se
tions.

Let us switch to the numerical solution of the scatteri
problem in the continuum approach. The differential proble
to be integrated consists of Eq.~30! and asymptotic condi-
tions at the center of the vortex and at infinity:

H̃uC̃&5LuC̃&, ~36a!

uC̃&;AI emr um11u

r um21u I when r!1, ~36b!

uC̃&; I Jumu~kr!1smYumu~kr!

K umu~¸r!
I

when r@maxS 1;
1

k
;
1

¸ D . ~36c!

The presence of the matrixA in the condition~36b! means
that the functionsũ andṽ are not asymptotically independen
even in the lowest approximation. In the next approximat
there appears an additional ‘‘interaction’’ betweenũ and ṽ,
which is realized in the nonunit factorem; its value cannot be
found through this asymptotic expansion.

We use the one-parameter shooting method, solving E
~36!, as described in Refs. 30 and 40. Choosing the shoo
9-5
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parameterem , we ‘‘kill’’ the growing exponent for the func-
tion ṽm in Eq. ~34b8!, where the coefficientgm should be
equal to zero; as a result we have obtained a w
pronounced exponential decay forṽm}K umu(¸r), and oscil-
lating solutions forũm . The scattering amplitude was foun
from these data by comparison with the asymptotes~36c!.
The results are discussed in Sec. III C.

B. Discrete approach

In the discrete lattice approach, the small amplitude s
fluctuation modes in the presence of a vortex at the cente
a finite circular system of radiusR are found. The spins
occupy sites on a square lattice. We use the formalism
set of local coordinates as described in Sec. II for the c
tinuum model. Similar to the continuum expression~10!, we
describe the dynamically fluctuating spin on lattice siten as

Sn5S~e31m1e11m2e2!, ~108!

wherem1 andm2 measure spin rotations moving towards t
polar axis and projected onto thexy plane, respectively, se
Eq. ~12!.

The spin dynamics equations of motion with an assum
e2 ivt time dependence were linearized inm1 andm2, lead-
ing to an eigenvalue problem requiring numerical diagon
ization. We assumed a Dirichlet boundary condition,m1
5m250 at the edge of the system studied. For circular s
tems of radius R, we used a Gauss-Seidel relaxati
scheme25 to calculate the frequencies and eigenfunctions
some of the lowest eigenmodes with a single vortex pres
at the system center. Before doing this, the vortex struc
was relaxed to an accurate static structure using an en
minimization scheme. The diagonalization is partial; ty
cally only the lowest 20 to 40 eigenstates were found, wh
substantially reduces the computing time needed, and rel
constraints on the precision of the calculations. This limi
diagonalization, however, gives only modes which ha
long-wavelength spatial variations, which provides for
good comparison with continuum theory.

We considered different values ofl close to 1. Although
the continuum limit would be better represented by usingl
very close to 1, this could result in a vortex radiusr v
5(a/2)Al/(12l) easily exceeding the system size that c
be treated numerically. Therefore, data were calculated u
l50.99, for which r v'4.97a. With this size of vortex
length scale, discreteness effects due to the underlying la
should be unimportant, and still, the vortex structure fits w
within the confines of a system with a radius as small aR
'10a, so that finite-size effects should also be negligible

In general, a given mode haseimx angular dependence o
the azimuthal coordinatex, where m is some integer azi-
muthal quantum number. In the continuum theory presen
in Sec. II, m is a good quantum number, due to rotation
invariance. This symmetry is weakly broken on a lattice,
for long-wavelength and lower frequency modes,m can be
considered a good quantum number even on a lattice.~Gen-
erally, the calculated magnon wave functions were som
times found to be composed of linear combinations of1m
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and 2m components.! The numerically found modes wer
also characterized by a principle quantum numbern, being
the number of nodes in the wave function along the rad
direction. For a mode of determinedm andn, the scattering
amplitudes was found by a fitting procedure applied to th
calculated eigenfunction for that mode~essentially, finding
the ratio of outgoing and incoming waves!, see Ref. 25 for
details.

In the continuum theory, scattering was analyzed a
function of wave vectork, or in terms of the dimensionles
krv . For lattice calculations, the values ofk cannot be cho-
sen freely, instead, they are determined by the actual sys
size. For a mode found to be oscillating at eigenfrequencyv,
the wave vector magnitudek associated with the mode wa
found by supposingk5(k,0), and inverting the free magno
dispersion relation for the 2D EP FM on a lattice,

vk54JSA~12gk!~12lgk!,

gk5
1
2 ~coskx1cosky!. ~37!

Therefore, a calculation of the modes for a single lattice s
gives only specific values ofk5krv , one value correspond
ing to each mode. To get a wider and more continuous ra
of data for comparison with the continuum theory, calcu
tions were carried out on lattices ranging in radius fromR
515a to R540a. By plotting results as functions ofkrv ,
for fixed m but from variousn and R, the data from the
different system sizes superimposes smoothly, giving m
slowly changingkrv , which is more appropriate for com
parison with the continuum limit.

C. Numerical results

Numerically, we have obtained the data of the vorte
magnon scattering by the two different approaches discus
above: solving the scattering problem~36! using the shooting
method for the continuum limit, and extracting the scatter
data from numerical diagonalization of finite discrete sy
tems. To be specific, data are presented for scattering fro
vortex with unit vorticity,q511 and positive polarization
p511. One should note that results for vortex-magn
scattering for modesm from other vortex types, as seen
Eq. ~23!, should depend on the sign ofqpm. The results are
the following:

For all modes the scattering amplitudesm(k) tends to
zero ask→0. In the long-wavelength limit the maximal sca
tering is related to the modes withm561. Except for the
mode with m521, the scattering amplitude in the long
wavelength limit takes a negative value, see Fig. 1. At
tremely low values of wave numberk&0.01, the scattering
data contain sets of doublets for modes with opposite si
of m. In the long-wavelength limit the doublet splitting ap
pears as a small correction, but the scattering picture cha
when k increases. For all modessm(k) diverges ask→`:
the scattering amplitudesm(k→`)→1` for all modes with
m>21, butsm(k→`)→2` for m,21, see Fig. 2. Natu-
rally, there is no real divergence; it means that the physic
observed phase shift does not tend to zero at infinity, but
finite valuedm(k→`)→6p/2. The scattering data are pre
9-6
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sented in Figs. 1 and 2. Comparison with the results of ex
diagonalization on finite systems shows very good agreem
between the two approaches.

IV. SCATTERING PROBLEM: ANALYTICAL
DESCRIPTION

A. Scattering at long wavelength

In order to analyze the scattering problem analytically
the long-wavelength limit, we start from the zero-frequen
solutions, whenV50. First note that for the special cas
m50,61 there exist so-calledhalf-bound states. Recall that
a zero-frequency solution of the Schro¨dinger-like equation is
called a half-bound state if its wave function is finite, b
does not decay fast enough at infinity to be square integra
We will refer to such modes ashalf-local modes. These

FIG. 1. ~Color online! Scattering data for differentm for small
wave numbers,krv,1.3: from continuum theory~lines! and from
discrete model numerical diagonalization~symbols! in circular
square lattice systems of radiiR515, 20, 25, 30, 35, and 40.

FIG. 2. ~Color online! Scattering data for differentm for a wide
region of wave numbersk: from continuum theory~lines! and from
discrete model numerical diagonalization~symbols!.
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modes correspond to the translational (m561) and rota-
tional (m50) symmetry of an infinite system, they have a
exact analytical form:

ũm
(0)5

q sinu0

r umu
, ṽm

(0)5mu08 , m50,61. ~38!

Unlike the case of half-local modes withm50,61, all other
zero-frequency solutions are nonlocal, and we are not abl
construct exact expressions for them, but only the asym
totes forr@1:

ũm
(0)}r umu, ṽm

(0)}
e2¸r

Ar
. ~39!

Nevertheless, we will see that the knowledge of asympto
solutions like Eq.~39! will be enough to reconstruct th
k-dependence of the scattering amplitude. In order to so
the scattering problem in the long-wavelength limit we app
a special perturbation theory, proposed in Ref. 24 and 41
the modes withm561,0, and extending it for all values o
m. We construct the asymptotes of such a solution for a sm
but finite frequency by making the ansatz

ṽ~r!5 ṽ0~r!@11ka1~r!1k2a2~r!#, ~40a!

ũ~r!5ũ0~r!@11kb1~r!1k2b2~r!#. ~40b!

Here a1 ,b1, anda2 ,b2 are first- and second-order corre
tions to the zeroth solutions, respectively. Let us insert t
ansatz into the set of Eqs.~36!, multiply from the left with
r^C̃u without integrating; then one obtains equations for t
first- and second-order corrections:

@r~ak8ṽ0
21bk8ũ0

2!#85Fk~r!, k51,2,

F1~r!52r$V~ ũ0
22 ṽ0

2!12~W21/2!ũ0ṽ0%,

F2~r!5r$2ũ0
21 ṽ0

2/212~W21/2!~ ũ0
22 ṽ0

2!

12V~ ũ0
2b12 ṽ0

2a1!12ũ0ṽ0@~W21/2!

3~a11b1!22V#%. ~41!

We are interested in the correctionsbk , which will give us a
possibility to calculate the scattering amplitude. The form
solution of these equations can be written as

bk~r!5b~0!1E
0

r ak8~h!ṽ0
2~h!dh

ũ0
2~h!

1E
0

r dh

hũ0
2~h!

E
0

h
Fk~j!dj. ~42!

Let us calculate the first-order correctionb1. It is easy to see
that the second right-hand side~RHS! term has an exponen
tial decay asr→`, while the third one has a slow algebra
decay only. Thus, far from the vortex core we have simp
9-7
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b1~r!.const2
r22umu

2umu E0

`

F1~j!dj, ~43!

valid in the regionr@1.
To calculate the second-order correctionb2, let us note

that the last RHS term of Eq.~42! is divergent forr→`,
while the integral witha2 has an exponential decay, like th
first-order correction. To derive the divergent inner integ
in Eq. ~42! we add and subtract the function

F2
(0)~j!52

@j2ũ0
2#8

2~ umu11!
2

@sin2u0ũ0
2#8

2umu
. ~44!

Then we arrive at an approximation forb2(r) in the impor-
tant regionr@1:

b2~r!.const2
r2

4~ umu11!
2

ln r

2umu
2

r22umu

2umu

3E
0

`

@F2~j!2F2
(0)~j!#dj. ~45!

Now we are in position to compare the magnon amplitu
ũm5ũ0(11kb11k2b2) with the scattering approach in o
der to extract the information about the scattering amplitu
sm(k). To describe the scattering problem in the lon
wavelength approximation we rewrite the differential pro
lem ~30! for large distanceskr@1, only considering the
terms with k2. In this scattering approach the oscillatin
function ũm satisfies an equation

S ¹r
21k22

n2

r2D ũm50, n25m22k2. ~46!

The solution of this equation can be written as

ũm~r!}Junu~kr!1s̃n~k!Yunu~kr!

}
1

Ar
cosS kr2

unup
2

2
p

4
1 d̃mD , ~47!

where the index of the Bessel and the Neumann functio
noninteger. It results in a value ofd̃m which differs from the
real scattering phase shiftdm . Using asymptotic expansion
~34a! and ~47!, the desired relation between the phase s
and d̃m can be written as

dm~k!5 d̃n~k!1
umu2unu

2
p. ~48!

In the lowest order approximation ink, the corresponding
relation for the scattering amplitudes has the form

sm~k!5s̃n~k!2
pk2

4umu
. ~49!

To compare the scattering solution~47! with the result of the
perturbation theory we can expand the cylindrical functio
in powers of the small quantityunu2umu and represen
05442
l

e

e
-
-

is

ft

s

through the cylindrical functions of integer orderumu, as
done in Ref. 31. After that in the regionkr!1 we are able to
use the asymptotes of the cylindrical functions at the orig
we arrive at the formula

ũm~r!.r umuH 12
k2r2

4~ umu11!
2

k2

2umu
lnS kr

2 D
2sm

~ umu! !2

pumu S 2

kr D 2umuF12
k2

4umu
SmG J ,

Sm5g1umu (
n51

umu21
1

n~ umu2n!
, ~50!

whereg is Euler’s constant.
Comparing this expression with the perturbation theo

results@see Eqs.~40b!, ~43!, and ~45!#, in the region 1!r
!1/k, where both are valid, we can restore the general
pendence of the scattering amplitude in the long-wavelen
approximation:

sm~k!52AmS k

2D 2umu

1mBmS k

2D 2umu11

, ~51a!

Am5
2pumu

Sn~ umu! !2E0

`

@F2~j!2F2
(0)~j!#dj, ~51b!

Bm52
p

m~ umu! !2E0

`

F1~j!dj. ~51c!

Equation~51a! solves the scattering problem except for fa
torsAm andBm . These factors can be found by the nume
cal integration of Eqs.~51b! and~51c!, using numerical data
for ũ0 and ṽ0. Thus, solving the equations for zero-mod
once, we compute the whole dependencesm(k). Neverthe-
less, in order to discuss the analytical behavior let us n
that for sufficiently large values ofumu, we can limit our-
selves to the contribution of the term withũ0

2 in the function

F1 and the term withũ0
2b1 in the functionF2, see Eq.~41!.

To calculate the integrals we need to have more informa
about the zero-modes. At small distancesr!1 the isotropic
~exchange! approximation works correctly, which leads t
the following solutions:28

ũ0}r umu sinu0 , ṽ0}r umu11u08 .

Such solutions have the correct asymptotic behavior at in
ity and at the origin. Our numerical calculations justify th
correctness of these assumptions form@1; as a result we
obtain analytical estimates for these factors:

Am'
18~2umu21!!

Sn„~ umu21!! …2
, Bm'

4p~2umu21!!

~ umu! !2
. ~52!

To compare the scattering results for different modes,
write explicitly the asymptotic expressions for all mode
taking into account Eq.~51a!, and asymptotes for half-loca
modes from Refs. 24 and 41,
9-8
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sm50~k!'2
p

2
k2 ln~1/k!, ~53a!

sm561~k!'7
pk

4
, ~53b!

smÞ0,61~k!'2AmS k

2D 2umu

1mBmS k

2D 2umu11

. ~53c!

In the main approximation ink the scattering picture con
tains doublets for modes with opposite signs ofm for the
modes withumu.1. The splitting of the doublets@the last
term in Eq.~53c!# appears in the next order ink. The split-
ting of the doublets for the magnon modes on the vor
background with givenm56n was mentioned in the earlies
papers on vortex-magnon scattering;21,22 but it was ex-
plained, in fact, only form561.24 Our considerations on
the basis of Eq.~13! show that the splitting of the scatterin
data is the direct analog of the Zeeman effect for elect
states splitting in an external magnetic field. To follow th
analogy one can rewrite the splitting constantBm in the form

Bm}E
0

`

djj2umu@A~j!•ex#,

hence the splitting appears only in the effective magn
field, which is described by the vector potentialA.

Using scattering results~53! one can solve the scatterin
problem for a plane spin wave in the form~35!. In the long-
wavelength limit the maximum scattering is related to t
translation modes withm561, which gives the scattering
function ~35b! in the form

F~x!5Apk

2
e3ip/4 sinx. ~54!

In this approximation the scattering is anisotropic, and
total scattering cross section is%5p2k/4. To explain the
origin of the anisotropic scattering, let us mention that
plane spin wave makes a spin flux, which influences
vortex as a whole, trying to move it by exciting translation
modes. It is well known that the vortex dynamics appears
the gradient of a magnetization field like the magnon flux42

The dynamics of the vortex has a gyroscopical behavior~see
Ref. 4!: acting along thex axis, the spin wave causes th
translational motion of the vortex along they axis, which
results in Eq.~54!.

B. Scattering problem for short wavelength

For largek, in the main approximation to lowest order
1/k, the scattering problem~36! can be rewritten in the form

H̃uC̃&52k2uC̃&, ~55a!

uC̃&; I emr um11u,

r um21u I , when r!1, ~55b!
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uC̃&; I Jumu~kr!1smYumu~kr!

K umu~kr!
I , when r@1.

~55c!

We see that the functionsũ and ṽ have independent asymp
totes at the origin~55b! and at infinity~55c!. It means that
the role of the ‘‘coupling potential’’W in the scattering prob-
lem ~55! is unimportant here. Therefore one can neglect
coupling potential and formulate the scattering problem
the master functionũ only

@2“r
21Um~r!#ũm5k2ũm , ~56!

where the partial potential is

Um~r!5U0~r!1V~r!5U~r!2
1

2
1F @A~r!•ex#2

m

r G2

.

~57!
It is natural to suppose that the WKB approximation

valid for this case. We use the WKB method in the for
proposed earlier for the description of the scattering for i
tropic 2D magnets,29 and generalized after that for any sin
gular potentials.43 We start from the effective 1D Schro¨-
dinger equation for the radial functionũm(r)5cm(r)/Ar,
which yields

F2
d2

dr2
1Ueff~r!Gcm5k2cm ,

~58!

Ueff~r!5Um~r!2
1

4r2
.

The WKB solution of Eq.~58!, i.e., the 1D wave function
cm

WKB , leads to the following form of the partial wave

ũm
WKB5

cm
WKB

Ar
}

1

ArP~r!
cosS x01E

r0

r

P~r8!dr8D , ~59!

whereP5Ak22Ueff. Analysis shows that Eq.~59! is valid
for r.a, wherea is the turning point. The value ofa cor-
responds to the conditionP(a)50, which results ina
;umu/k!1. We assume that the parameterr0 satisfies the
conditiona!r0!1.

On the other hand, at small distancesr!1, the partial
potentialUm has the asymptotic form

U m;
n2

r2
,

n5m2 lim
r→0

$r@A~r!•ex#%5m1qp, ~60!

therefore one can construct asymptotically exact soluti
~recall that we supposeq5p51)

ũm}Jum11u~kr! when r!1. ~61!

For k@umu there is a wide range of values ofr, namely,
9-9
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umu/k!r!1, ~62!

where we can use the asymptotic expression29 for the Bessel
function ~61! in the limit kr@umu:

ũm}
1

Ar
cosS kr2

um11up
2

2
p

4
1

4um11u221

8kr D .

~63!

In the range of Eq.~62! the solutions~59! and~63! coincide
due to the overlap of the entire range of parameters, so
can derive the phasex0 in the WKB solution~59!,

x05kr02
um11up

2
2

p

4
1

4um11u221

8kr0
.

Therefore, we are able to calculate the short-wavelen
asymptotic expression for the scattered wave phase shif
the asymptotic expansion of the WKB solution~59!

dm~k!5 lim
r→`

S E
r0

r

P~r8!dr81x02kr1
umup

2
1

p

4

2
4m221

8kr D . ~64!

Under assumed conditionskr@1, the WKB integral in Eq.
~64! can be calculated in the leading approximation in 1/kr,

E
r0

r

P~r8!dr8'k~r2r0!2
1

2kEr0

r

Ueff~r8!dr8.

As a result, the scattering phase shift for large wave nu
bers,k@1, has the form

dm~k!5dm~`!2
1

2kE0

`FUm~r!2
n2

r2Gdr,

with the limiting value

dm~`!52
p

2
~ unu2umu!52

p

2
sgn1~m!,

sgn1~m!5H 1, m>0

21, m,0.
~65!

Calculating the integral we obtain the phase shift in the fo

dm~k!52
p

2
sgn1~m!1

D11mD2

k
,

D15
1

4E0

`H 3 sin2u0

r2
13 cos2u01~u08!2J dr'2.44,

D25E
0

` 12cosu0

r2
dr'1.38. ~66!

The corresponding amplitude of the vortex-magnon scat
ing is
05442
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sm~k!5
k

D11mD2
. ~67!

This linear divergence is well pronounced in the numeri
results, see Fig. 3. To understand the origin of this div
gence let us go back to Eq.~65!. One can see that the sca
tering phase shift atk→` does not vanish for potentials wit
inverse square singularity at the origin, withnÞm, see Eq.
~60!. This is possible only in the magnetic field, which h
singular behavior likeuAu;1/r.

Let us look for the consequences of this unusual beha
of the scattering,sm→6`. We consider the scattering prob
lem for a plane spin wave in the form~35!. In the short-
wavelength limit the WKB results for the phase shift~66! are
available. One can see that the scattering function~35b!
tends to zero very quickly for large wave numbers,F(x)
5O(k25/2), so there is no real divergence or singularity f
a physically observable quantity such as the total scatte
function F at large energies.

C. Levinson theorem

Now we can compare the scattering results in the lo
and short-wavelength limits. The scattering is absent for
limit k→0. However, the scattering amplitude has a line
divergences}k for sufficiently large wave numbers, se
Eq. ~67!. All these results were verified by the numer
cal calculations for continuum limit and for finite-size
discrete lattice systems, see Figs. 1–3. According to
analytical calculations, see Eq.~65!, the phase shift for
the short-wavelength limit tends to the finite valuedm(`)
52sgn1(m)p/2. This result corresponds to the numeric
data, see Fig. 4, except for the mode withm521, where the
numerical data givesdm521(`)52p/2. However, we need
to note that the phase shift is determined with respect top,
in this sense valuesdm5p/2 anddm52p/2 are identical.
What is physically important is howdm(k) changes from

FIG. 3. ~Color online! Scattering data for differentm for the
short-wavelength limit: from asymptotes~67! of the continuum
theory ~lines! and from discrete model numerical diagonalizati
~symbols!.
9-10
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small to largek. According to our numerical results, the tot
phase shift can be described by the formula

dm~0!2dm~`!5H p

2
sgn1~m!, mÞ21

p

2
, m521.

~68!

It is well known that the total phase shift is related to t
number of bound statesNm

b according to the Levinson theo
rem from the scattering problem for a spinless quantu
mechanical particle without a magnetic field. This theor
was originally proved by Levinson for the 3D case, see R
39. The two-dimensional version of the Levinson theor
reads44–46

dm~0!2dm~`!5pNm
b . ~69a!

If there exist half-bound states~see notations in the Sec
IV A ! for the p wave (m51), this is modified to44,46

FIG. 4. ~Color online! Scattering phase shifts for differentm.
Numerical results from the continuum theory.
05442
-

f.

d1~0!2d1~`!5pN1
b1p. ~69b!

For the 2D EP FM, the scattering picture is much more co
plicated. First, we have no standard Schro¨dinger equation,
but the generalized one, Eq.~13!. This becomes apparent a
most in the threshold behavior for the half-bound states,
the contribution of the half-bound states in the form~69b!
may be not adequate, see below. Second, because of the
of the effective magnetic field, there appears anm-dependent
potential: the symmetrydm(k)5d2m(k) is broken, so it is
not enough to take into account partial waves withm>0
only. As a result Levinson’s relation~69a! has a different
form for the opposite signs ofm.

Thus, except for the case of half-bound states one
hope that the Levinson theorem is adequate. However,
see that the total phase shift~68! contradicts the Levinson
theorem in the form~69!. The reason is that the partial po
tential Um in the Schro¨dinger equation~56! has an inverse
square singularity at the origin,U m;n2/r2, where n5m
1qp, see Eq.~60!. Such a situation changes the statemen
the Levinson theorem. As we have proved recently in R
32, the generalized Levinson theorem for the Schro¨dinger-
like equation for potentials with such singularities has t
form

dm~0!2dm~`!5pNm
b 1

p

2
~ unu2umu!. ~70!

An additionalp can appear on the RHS of this equation,
the half-bound states exist for thep wave (umu51), see Eq.
~69b!. To explain the meaning of the extra term (p/2)(unu
2umu) in the generalized Levinson theorem~70!, recall that
in the partial wave method the scattering data are class
by the azimuthal quantum numberm, which is the strength of
the centrifugal potential. In the presence of a partial poten
with an inverse square singularity at the origin such asU m
;n2/r2, the effective singularity strength is shifted by th
value unu2umu, which results in a change in the shor
wavelength scattering phase shift by (p/2)(umu2unu).

Let us compare the predictions of the generaliz
Levinson theorem ~70!, which is suitable for the
Schrödinger-like equation, with our results for the vorte
magnon scattering problem in the 2D EP FM, which can
described by the generalized Schro¨dinger equation~13!. In
our case the singular potential is caused by the specific
gular magnetic field at the origin,uAu;1/r, which results in
n5um11u. The system has no bound states,Nm

b 50, there-
fore Eq.~70! takes the form

dm~0!2dm~`!5
p

2
sgn1m. ~71!

Our numerical results~68! correspond to this formula for al
modes withmÞ21. The cause is the influence of the ha
bound states. By comparison of Eqs.~71! and ~68!, one can
adapt the generalized Levinson theorem for this case. It re
9-11
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dm~0!2dm~`!

5H pNm
b 1

p

2
~ unu2umu! whenmÞ21

pNm
b 1p1

p

2
~ unu2umu! whenm521.

~72!

Let us compare this result with Eq.~69!. An extrap, which
appears for the modem521, is connected with the half
bound states, see Eq.~69b!. To explain the situation, let u
stress again that our scattering problem is formulated no
the standard Schro¨dinger equation. However, the proble
has a symmetry such that one eigenfunction becomes a
ter function, while the other is a slave. This makes it poss
to use the main features of the standard quantum-mecha
scattering theory. The appearance of the half-bound stat
connected with the symmetry of the whole system, and b
of the eigenfunctions are important. In the system there
three half-local modes, see Eq.~38!. According to Eq.~72!
only one of the half-bound modes, namely, the mode w
m521, gives an extrap to the Levinson’s relation. More
generally, this extra contribution corresponds to the h
bound mode withm52qp, see Eq.~60!. This result cannot
be explained in the framework of the Levinson theorem
the standard Schro¨dinger equation, where both half-boun
states withm511, andm521 should make contribution
to the Levinson’s relation. The corresponding analog of
Levinson theorem for the generalized Schro¨dinger equation
~13! takes into account the contribution of the half-bou
state for onlyonevalue ofm, namely, form52qp.

V. CONCLUSION

We have presented a detailed study of vortex-magnon
teractions in the 2D EP ferromagnet, having described
process by a generalized Schro¨dinger equation. The main
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features of the magnon scattering are connected with the
cial role of the effective magnetic field, which is created
the vortex. This effective field acts on magnons in the sa
way as a magnetic field influences an electron, leading to
appearance of the Lorentz force and the Zeeman splittin
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numbersm. The singular behavior of the effective magne
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Our investigations can be applied to the description of
internal dynamics of vortex state magnetic dots; the theory
the vortex-magnon scattering developed here could b
good guide for the study of the normal modes in vortex-st
magnetic dots. It is clear that the EP FM cannot corresp
quantitatively to the case of vortex-state magnetic do
where the anisotropy is negligible and the static vortex str
ture is stabilized by magnetic-dipole interactions. We did n
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