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Amplitudes for magnon scattering by vortices in two-dimensional weakly easy-plane ferromagnets
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We study magnon modes in the presence of a vortex in a circular easy-plane ferromagnet. The problem of
vortex-magnon scattering is investigated for partial modes with different values of the azimuthal quantum
numberm over a wide range of wave numbers. The analysis was done by combining analytical and numerical
calculations in the continuum limit with numerical diagonalization of adequately large discrete systems. The
general laws governing vortex-magnon interactions are established. We give simple physical explanations of
the scattering results: the splitting of doublets for the modes with opposite signsdfich takes place for the
long-wavelength limit, is an analog of the Zeeman splitting in the effective magnetic field of the vortex. A
singular behavior for the scattering amplitugigk takes place akdiverges; it corresponds to the generalized
Levinson theorem and can be explained by the singular behavior of the effective magnetic field at the origin.
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. INTRODUCTION experiment® 1’ verify such properties; in particular, a mode
with anomalously low frequency was detectédsee also
It is now firmly established that vortices play an importantRefs. 18 and 19.
role in condensed-matter physics of two-dimensiof2i)) The general properties of vortex dynamics are intimately
systems with continuously degenerate ground states. In paconnected to the problem of vortex-magnon interactions.
ticular, the presence of vortices in 2D easy-pldBE) mag-  Usually this problem has been studied numerically for dis-
nets gives rise to the Berezinsiosterlitz-Thouless phase crete models, mainly for circular samples cut from large lat-
transition~ Vortices play an essential role in the thermal tice system&%-2’An analytical description of the problem in
and dynamical properties of 2D magnets, for a review se¢he framework of the continuum model has been proposed
Ref. 4. A vortex signature in dynamical response functiongecently for different 2D magneté:2~3The most important
can be observed experimentally; e.g., translational motion oéffect of the vortex-magnon interaction is an excitation of
vortices leads to a central peak in the dynamical correlatiorertain magnon modes due to vortex motion and vice versa.
functions® This peak had been predicted both by a vortexBecause the magnons in the EP ferromagnet have a gapless
gas theory and by combined Monte Carlo spin dynamicglispersion law, a possible Larmor dynamics of the vortex
simulations® center is strongly coupled with a magnon cldidherefore
Recently there has been renewed attention to the probletthe corresponding motion has a non-Newtonian fétm.
of magnetic vortices for finite-size magnetic particles, espe- In this paper we consider the magnon modes which exist
cially their dynamics. It becomes very important in connec-in a 2D Heisenberg EP ferromagnet in the presence of a
tion with novel composite magnetic materials such as magvortex. We apply different methods of analytical and numeri-
netic dot array$-*® These magnetic dots are submicron- cal investigation, in order to extend the research of Ref. 24,
sized islands made from soft magnetic materials on gresenting a wider range of results for the magnon scattering
nonmagnetic substrate. They are important from a practicamplitude. In Sec. Il we demonstrate that the vortex acts on
standpoint as high-density magnetic storage deitesd magnons in two ways. First of all, it provides for coupling
are interesting as fundamentally new objects in the basibetween different directions of magnetization precession; the
physics of magnetism. The distribution of magnetization inmagnon modes are described by a “generalized” Schro
such a dot is quite nontrivial: when the dot size is above ainger equation. Second, the problem naturally possesses an
critical value, an inhomogeneous state with an out-of-planeffective magnetic field, whose global properties are caused
magnetic vortex occurs, which is stable due to competiby the soliton topological charge. The scattering problem is
tion between exchange and dipole interactibhi. is ex-  treated both numerically and analytically for a wide range of
pected that these nonuniform states will drastically changevave numbers. The numerical study is carried out using two
the dynamic and static properties of a dot in compari-different approaches: solving the eigenvalue problem for the
son with a uniformly magnetized magnetic disk. Recentcontinuum limit(in the weak EP anisotropy limjtand ex-
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tracting the scattering data from numerical diagonalization othooses the homogeneous spin distribution alongtheis,

discrete systems, see Sec. lll. The analytical study of théhen the spin wave takes the form

scattering problem is developd&ec. 1V) using both the

long- and short-wavelength approximations. In contrast to 1 n kr, (ikx—i t) 5
i ; i itti m,=1, m,+im,——=xexpikx—iont).

the previous work' we describe analytically the splitting x z y \/rkzrf

phenomenon of the doublets of magnon modes with opposite
signs of the azimuthal quantum number, and give a physicafhe dispersion law has the gapless form
picture of this effect: an effective magnetic field causes the
Zeeman splitting of the magnon levels, see Sec. IV A. The w(k)=cky1+ erUZ, (6)
singular behavior of the scattering amplitude is predicted in
Sec. IV B for the short-wavelength limit. This feature is Wherec=2aJSy1—\ is the characteristic magnon spe&d,
caused by the specific singular effective magnetic field at thés the magnon wave vector, aike= |k is its magnitude.
origin (vortex core; this study verifies the generalized ver- ~ The simplest nonlinear excitation in the system is an out-
sion of the Levinson theorem, which we have establishe®f-plane vortex***
recently in Ref. 32 for potentials with inverse square singu-
larities. d=do=potdx, 0=06u(p),

()

Il. MODEL AND MAGNON MODES 6o(0) = ?m Bo() = /2,

We consider the classical 2D Heisenberg ferromagnet ] .
(FM) with the Hamiltonian where ¢, is an arbitrary angle due to the EP symmepy,

=|r|/r, and y are dimensionless polar coordinates in the
plane of the magnet, the vorticitye Z plays the role of ar;
H=-1J E, [Sh-Sv—(1-N)SiS, ], (1) topological charge, and the polarizatiprs = 1 is connected
() with a 7, topological chargdthe Pontryagin index
where the spinsS, are classical vectors on a square lattice
with the lattice constant. Here (,n’) denotes nearest- 1 ) 1
neighbor lattice sites)>0 is the exchange integral, and Q= EJ Qd%, Q=5e&m-(smxm. (8
€[0,1) describes easy-plane anisotropy.

We consider the continuum dynamics of the Heisenber%Ve term Q the gyrocoupling density, following Thief&;it
ferromagnet, which is adequate for modg) in the small- has a sense as the density of the topological charge, see
anisotropy case (2 \<1). In a continuum limit the dynam- Papanicolaou and TomarésFor the vortex configuration
ics of the FM is described by Landau-Lifshitz equations for(7) the gyrocoupling density can be represented as
the normalized magnetization

g Sin gy,
sy o= ®
m(r,t)=T=(sinecos¢;sinesin¢;cose). (2
hence the Pontryagin index takes on half-integer or integer
The equations of motion result from the Lagrangian values Q=qp/2. Note that the presence of a nontrivial
m-topological charge directly results in the gyrotropical dy-
) ) do namics of the vortex, which conserves the gyroved®r
L—;fd X(l_COSH)E_E[H,Qﬁ], (3) :QZ’JTﬁsaizeZ.
The function 6, is the solution of an ordinary differen-
with the energy functional tial equation, which can only be solved numericafly’
Without an external magnetic field two oppositely polarized
JS . cogd vortices are energetically equivalent; for definiteness we set
E[0,¢]= TJ d’x| (V0)*+(V ¢)*sin o+ ——|. p=+1.
o 4) To analyze magnons on the vortex background, we use a

formalism and set of coordinates developed in Ref. 21, set-

Herer,=(a/2)y\/(1—\) is the characteristic length scale ting up the problem in terms of local Cartesian spin compo-
(“magnetic length”). One should note that the strength of the nents. The unperturbed spins of the static vortex structure,
weak easy-plane anisotropy\{€1), determines the mag- mg, definelocal polar axese;, different at every site, spe-
netic length scale, ; in this continuum analysis, results will cifically, Sy(r,t) = Ses.
depend on lengths scaled by, and have no explicit depen- It is to be understood that these axes depend on the site
dence on the anisotropy strength. chosen. The magnetic fluctuations occur perpendicular to

The ground state of the magnet is continuously degeneratfiese local axes, suggesting the definition of other agges,
and isotropic within the EP. The simplest elementary lineabeing chosen along the direction efx e;, ande;=e,X ez,
excitations of EP FM’s that arise on the homogeneous backo complete the mutually perpendicular set. One supposes
ground are the magnons belonging to a continuous spectrurthat a dynamically fluctuating spin has small deviations
They have the form of elliptically polarized waves; if one along thee; ande, axes so that a spin is written as
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S(r,t) =S(e3+me; + mye,). (10

The fieldsm; and m, have a simple physical significance,

PHYSICAL REVIEW B59, 054429 (2004

®=i[BgFX=4WQ=qp®O (16)

which can be seen if a given spin is supposed to have small an integer multiple of the flux quantus, =2, so there
deviationse and 9 away from the vortex structure, deter- js no Aharonov-Bohm scattering picture for the system.

mined by azimuthal and polar spherical anglég,and 6.
We write

S(r.t)
S

=cog 6+ )e,+sin(fy+ )

X[cod ot @)etsin(dot@)g].  (11)

Linearizing in ¢ and ¥, and using the definitions of

{e,,e,,6e3}, comparison of Eq9.10) and(11) shows that

m;=4Y, mM,=¢ Sinfy. (12

Thus, them; field measures spin rotations moving towards

the polar €,) axis and them,

A differential equation like Eq(13) is not a unique prop-
erty of the vortex-magnon problem in the EP FM only. It
appears for different kinds of anisotropy: it describes mag-
non modes on the soliton background in the easy*4sisd
isotropic magnet® Note that for the specific case of an
isotropic system with an exact analytical soliton solution of
the Belavin-Polyakov type, the potentidldisappears, so the
magnon modes satisfy the usual Sclinger-like equation
id,y=Hy, which describes, e.g., the quantum-mechanical
states for a charged particle in the axially symmetric poten-
tial U(p) under the action of an external magnetic field with
a vector potentiah.

For the anisotropic case, whéki+ 0, the problem(13)

, field measures spin rotations has important unusual properties, which are absent for the
projected onto thay plane. In the absence of the vortex, we Belavin-Polyakov case. More generally

there appear proper-

have 6o=/2, ¢o=0, and such oscillations correspond 10 jes \yhich are forbidden for the usual quantum mechanics. In

the free magnons in the foriid).

The linearized equations fon; andm, can be described
by a single complex-valued functiom/(r,t)=mj;+im,,
which obeys the differential equation

i0,p=Hy+Wy*, H=(—iV-A)2+U, (13
with the “potentials”

1 2 0
U(p)= =sirfo| 1— 0| —co2hy— > (149

2 p? 2

1 RIS
W(p)—lenzeo(l—; +7, (14b
cosé,

A(p)=— pO%. (149

Here we use the dimensionless coordinate variable
=|r|/r,, dimensionless time variabte=tc/r,, and the op-
eratorV=r,d,; prime denotesl/dp.

Let us note that the vectdk acts in the Schidinger-like

particular, an effective discrete Hamiltonian of the system is
not necessarily Hermitian; in Refs. 21, 22, and 25 some con-
structive methods were elaborated to avoid these problems.
Nevertheless we will discuss the features of @) in order
to understand why the standard quantum-mechanical intu-
ition could fail.

The standard quantum-mechanical equatigng=H s
allows the conservation law,|#|2=—V -j for the current

=iV =y V) + 2| yPA. 17

The generalized Schdinger-like equation13) with W0
violates this conservation law, namely,

I |Y1?= =V j=iW(y*?—y?). (18)
Nonconservation of probability density has posed some
problems in the passage from standard quantum mechanics
to old pre-Feynmann quantum electrodynamics. The reason

is that Eq.(13) is formulated neither for a Hermitian, nor a
linear operator; the last statement is due to the broken sym-
metry under the rescalingg— \ ¢ with \ € C. There exists an
analogy with relativistic theory: there can appear solutions

operatorH in the same way as the vector-potential acts in thewith positive and negative energy in the passage from the
Hamiltonian of a charged particle. Then it is possible to conk|ein-Gordon to Dirac equation. In fact, our problem has the

clude that there is an effective magnetic flux density

qsinfy6;

B=VXA=g, (15

same origin. Let us reformulate the problébh®) as an equa-
tion second order in time. One can calculate that the Klein-
Gordon-like equation

— 0, p=(H2=W?) (19

Note that the effective magnetic flux density can easily be

rewritten through the gyrocoupling densit9) as B= Qe, .
Therefore the total flux is determined by the nontrivial

is valid far from the vortex center. What is important is that
Eqg. (19) contains a Hermitian operatdsimilar arguments

topology of the vortex configuration. On first view when were used in Ref. 25 Therefore, the eigenvalue problem
exploiting this analogy it is possible to look for the (EVP) for w?, not forw, is more appropriate for this system;
Aharonov-Bohm phenomenon for the scattering problem, bethe only problem is to separate solutions with positive and
cause this magnetic flux density is localized in the region ohegativew. Note, that there appear fourth-order operators
the vortex core. However, one can see that the total magnetigith respect to the space coordinate, which causes the pres-
flux ence of master and slave functions in the solution, see below.
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Such a problem, as well as a problem with nonconservedve can choose either sign of the frequency; but in order to
number of particlegprobability amplitudg appears in the make contact with quantum theory, with a positive frequency
theory of a weakly nonideal Bose gas. It results, in fact, inand energyé,=#f w,, we will discuss the cas€ >0 (w
the separation of positive and negative energy solutions un>0) only. Thus there are two different equations for the

deru-v Bogolyubov transformation® opposite signs ofn. However, in the limiting case of the
Following this scheme we need to generalize the “zero modes” with (=0, the system again is invariant un-
transformation to the nhonhomogeneous case. der conjugationsm— —m. For example, one of the zero
We apply the partial-wave expansion, using the af8atz modes, the so-called translational mode with= +1, has
the form

P(r,) =2 [Uu(p)€Patu,(p)e '],

sinfp | sinfy |

— 6y, Um=11= P +6p, (27)

(20) Un=+1=

which describes the position shift of the soliton. Because of
where a=(k,m) is a full set of eigenvaluesneZ being  the degeneration of the EVP &=0, it leads to the exis-
azimuthal quantum numbers, the, are arbitrary phases, tence of a zero mode witim= — 1; the eigenfunction of this
and Q) =wr,/c are dimensionless frequencies. This expanmode can be expressed just from E27) under the conju-

q)a(Xat):mX_wat+ nm:mX_QaT+ Mm

uandv (the indexa will be omitted in the fO||0Wing: Refs. 29 and 31, note that the mode with= +1 corre-
H U sponds in our notation to the mode with= —1 in the no-
H|W) = Q| W), H=‘ + = ‘ _ tations of Refs. 24 and 30. _ _ _ _
-W —H_ v It should be stressed that the picture is quite different for

(21)  the spe%iglgl’ cas&/=0, which corresponds to the isotropic
HereH. = —V§+MO+ 1/2+V is the 2D radial Schinger- magnetz. “Here we have two uncoupled equations for the
like operator with the potentials functionsu andv. One of the equationdor the eigenfunc-
tion v) has the negative eigenvalue(), from which it nec-

m 1 g?+m? 3q? sirfe, essarily results that=0. I/n this special case the zero modes

Us(p)=U(p)+A%+ 5= T > (27) have the fornu > 6, andv . ,=0. Therefore the zero
p P 2p mode withm= —1 cannot be obtained by the simple conju-
3 co2l, 6} gation. It explains the difference between the collective dy-

, (22) namics of the soliton in isotropic magnets, where it is enough
2 2 to take into account only the mode with= + 1, and the EP
FM, where translational modes witm=—1 andm=+1

2m(A-e,) 2qmcosd, must be taken into account. Nevertheless, the roles of the

Vip)=~ P JER (23 modes withm=—1 andm=+1 are not equal, for details
see Sec. IV C.
V2=d?/dp®+ (Llp)d/dp is the radial Laplace operator. In
spite of the fact that the EVIP21) is formulated for the lIl. SCATTERING PROBLEM: NUMERICAL RESULTS
Schralinger operator$i ., this EVP is different in principle
from the usual set of coupled Schlinger equations, which A. Continuum approach

is widely used, e.g., for the description of multichannel e intend to describe the scattering of magnons by a
scattering”® The reason is that the matrix Hamiltoni&his  yortex. However the EVR21) is not adjusted for the scat-

not Hermitian for the standard metriC, for details see Ref. 25tering pr0b|em, because it does not provide the asymptotic
To avoid this problem we introduce a corresponding bra vecindependence of the equations at infinity. To solve the prob-

tor by the definition lem it is convenient to make a unitary transformation of the
eigenvecto W),
(W|=]u; vl (2 ElGCNVECtOY)
The Hilbert space for th&@ function has an indefinite metric ~ cose —sine ~ u
W)=Alw), A= sine cose |’ )=~
(W|W)=(u|u)—(v]v), (25) v 28)
where (|v)=[gu(p)v(p)pdp is the standard scalar prod- . . L .
uct. By introducing such a Hermitian product, it is possiblel—sersggfﬁ of this unitary transformation is defined by the
to define the standard energy functiofsée Ref. 3D P
ELu,v]=(W|H|W)=(u[H , |u) +2(u]W[v) + (o|H_|v). tanzg:%_ (29

(26)

Let us mention that Eq21) is invariant under the conju- Then we obtain the following partial differential equation for
gationsQ— — ), m——m, andu«—uv. In a classical theory the function|W):
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HW)=A|W), H=Ho+V, A=diag«?x?), (309 ~ e e
vm(P)“K|m|(%p)+7m||m|(%P)“Tp+7mTp,
Ho=diag Ho; —Ho), Ho=—Va+ly, (30D (34b)

where K|, and I, are MacDonald and modified Bessel
functions, respectively; at the same timeields oscillatory
Whereg:HBl é” is a metric Spinor, the dimensionless wave solutions. Natura”y,-the real modes have an OSfCillatOI’y form
number isk=kr,, andx= \/;2+—1_ here; we will use this fact below for the numerical analysis.

First let us consider the magnon spectrum in the absendé means that the function becomes a master function in
of a vortex(free fields. Without a vortex ¢=0,0y= 7/2), Eqg. (303, while v is a slave(note that we choos@>0).
Egs.(30) are uncoupled, which results in free magnons,  This mirrors the difference between E§0g and a usual set

of Schralinger equations.

~ [ 2 Imlm « The scattering amplitude, or, equivalently, the phase shift,

Um(p) = Jjm(1p) ~ W_KPCOS( "P_T_Z)v contains all information about the scattering processes. In

V=[V+g(W-1/2)]A"2, (300

xp2l particular, the general solution of the scattering problem for a
- plane wave can be expressed in the form, cf. &y.
vm(p)=0, (31
5 krU ot eiKp—iwt
whereJ,, are Bessel functions. The free modgg play the mg—iml—zzxe' et Hix) , (353
role of the partial cylinder waves of a plane spin wave V1+kT, \/;

where the scattering function has the ffm

©

explik-r—iwt)= Z_ iMJ(kp)emMx—iot (32

SR _ITE  (eim-p)em™. (38D

V2K m=-o
To describe magnon solutions in the presence of a vortex,
one should note that far from the vortex center the potential The total scattering cross section is given by the expres-

V tends to zero, so Eq30a become uncoupled sion

Fx)=

- - 11 f 2w .
2 2\T— 2 2\ s L = dyv= ,
(V24 k%) Uu=0, (V2-x%)p=0, p>ma><1,K,%) e= | | A%dx m;m Om
(33 wherep,,=(4/k)sints,, are the partial scattering cross sec-
with asymptotically independent solutions: tions.
Let us switch to the numerical solution of the scattering
problem in the continuum approach. The differential problem

Un(p)~ &e‘ <P+ %e*“‘f’ to be integrated consists of EB0) and asymptotic condi-
Vo p tions at the center of the vortex and at infinity:
ocicos Kp—m—z-i-ﬁm . (349 H[W) = A| W), (363
Jp 2 4
€ p\m+1|
~ m
C C |q’>""A Im—1] when p<1, (36b)
Tp)~ et Lo, (34b) P
AR
|\AI‘f> ’Jm(KP)+0'mYm|(KP)
The scattering results in the quantify,= ,(x); it can Kim|(%p)
be interpreted as the scattering phase shift, determining the
intensity of the magnon scattering due to the presence of the 11
vortex. Sometimes it is useful to introduce the scattering am- when p>ma><( 1';’ ;) . (360
plitude, o,= —tan §,,,. Using this notation, the oscillatory o N
solution (34a can be rewritten in the following form: The presence of the matri in the condition(36b) means
that the functionsi andv are not asymptotically independent
Em(P)OCJ|m|(KP)+0—mY|m\(KP)v (34d)  even in the lowest approximation. In the next approximation

there appears an additional “interaction” betweerand v,
where Y, are Neumann functions. Let us stress that theyhich is realized in the nonunit factar,; its value cannot be
solution (34d) is valid only in the sense of the asymptotic found through this asymptotic expansion.
form (34a. As it follows from Eq.(34b), the functiono has We use the one-parameter shooting method, solving Egs.
an exponential behavior (36), as described in Refs. 30 and 40. Choosing the shooting
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parametek,,, we “kill” the growing exponent for the func- and —m components.The numerically found modes were
tion vy, in Eq. (34b), where the coefficienty,, should be also characterized by a principle quantum numiyebeing
equal to zero; as a result we have obtained a wellthe number of nodes in the wave function along the radial
direction. For a mode of determined andn, the scattering
amplitudeos was found by a fitting procedure applied to the
calculated eigenfunction for that modessentially, finding
the ratio of outgoing and incoming wavesee Ref. 25 for
details.

In the continuum theory, scattering was analyzed as a
B. Discrete approach function of wave vectok, or in terms of the dimensionless

In the discrete lattice approach, the small amplitude spiﬁ“v . For lattice calculations, the values loftannot be cho-

fluctuation modes in the presence of a vortex at the center ¢fen freely, instead, they are determined by the actual system
a finite circular system of radiuR are found. The spins Size. Foramode found to be oscillating at eigenfrequency

occupy sites on a square lattice. We use the formalism ant® wave vector magnitudeassociated with the mode was
set of local coordinates as described in Sec. Il for the confound by supposing=(k,0), and inverting the free magnon

tinuum model. Similar to the continuum expressiag), we  dispersion relation for the 2D EP FM on a lattice,
describe the dynamically fluctuating spin on lattice sitas
@ =4ISV(1= 70 (1= Ny,

¥k= 17 (cosky+cosk,). (37

pronounced exponential decay f?n,gocK\m\(%p), and oscil-

lating solutions foru,,,. The scattering amplitude was found
from these data by comparison with the asymptd&&o).
The results are discussed in Sec. Il C.

Si=S(e3+mye; +myey), (10)

wherem; andm, measure spin rotations moving towards the
polar axis and projected onto tlxg plane, respectively, see
Eqg. (12.

The spin dynamics equations of motion with an assume
e '“! time dependence were linearizedrim andm,, lead-
ing to an eigenvalue problem requiring numerical diagonal
ization. We assumed a Dirichlet boundary condition,

Therefore, a calculation of the modes for a single lattice size
gives only specific values of=kr,, one value correspond-
ing to each mode. To get a wider and more continuous range
f data for comparison with the continuum theory, calcula-
tions were carried out on lattices ranging in radius frBm
"=15a to R=40a. By plotting results as functions d€r,,,

—m.=0 at the ed f th ¢ tudied. For circul for fixed m but from variousn and R, the data from the
—m,=0 atthe edge ot the system studied. For CIrCUlar SySy;itterent system sizes superimposes smoothly, giving more
tems of radiusR, we used a Gauss-Seidel relaxation

) . X lowly changingkr,, which is more appropriate for com-
5 v
schem@ to calculate the frequencies and eigenfunctions of%arison with the continuum limit.

some of the lowest eigenmodes with a single vortex prese
at the system center. Before doing this, the vortex structure
was relaxed to an accurate static structure using an energy
minimization scheme. The diagonalization is partial; typi- Numerically, we have obtained the data of the vortex-
cally only the lowest 20 to 40 eigenstates were found, whichmagnon scattering by the two different approaches discussed
substantially reduces the computing time needed, and relax@bove: solving the scattering probléB6) using the shooting
constraints on the precision of the calculations. This limitedmethod for the continuum limit, and extracting the scattering
diagonalization, however, gives only modes which havedata from numerical diagonalization of finite discrete sys-
long-wavelength spatial variations, which provides for atems. To be specific, data are presented for scattering from a
good comparison with continuum theory. vortex with unit vorticity,g=+1 and positive polarization,

We considered different values wfclose to 1. Although p=+1. One should note that results for vortex-magnon
the continuum limit would be better represented by using scattering for modesn from other vortex types, as seen in
very close to 1, this could result in a vortex radins  Eq.(23), should depend on the sign gbm. The results are
=(a/2)y\/(1—1\) easily exceeding the system size that canthe following:
be treated numerically. Therefore, data were calculated using For all modes the scattering amplitude, (k) tends to
A=0.99, for whichr,~4.97a. With this size of vortex zeroak—0. Inthe long-wavelength limit the maximal scat-
length scale, discreteness effects due to the underlying lattidering is related to the modes with=*1. Except for the
should be unimportant, and still, the vortex structure fits wellmode with m=—1, the scattering amplitude in the long-
within the confines of a system with a radius as smalRas wavelength limit takes a negative value, see Fig. 1. At ex-
~10a, so that finite-size effects should also be negligible. tremely low values of wave numbear<0.01, the scattering

In general, a given mode ha¥"™r angular dependence on data contain sets of doublets for modes with opposite signs
the azimuthal coordinatg, wherem is some integer azi- of m. In the long-wavelength limit the doublet splitting ap-
muthal quantum number. In the continuum theory presentegears as a small correction, but the scattering picture changes
in Sec. Il, mis a good quantum number, due to rotationalwhenk increases. For all modes,(k) diverges ak— o°:
invariance. This symmetry is weakly broken on a lattice, butthe scattering amplitude,,(k— o) — + o for all modes with
for long-wavelength and lower frequency modescan be m=-—1, buto,(k—®)— —ow for m<-—1, see Fig. 2. Natu-
considered a good quantum number even on a lattiéen- rally, there is no real divergence; it means that the physically
erally, the calculated magnon wave functions were someebserved phase shift does not tend to zero at infinity, but to a
times found to be composed of linear combinationstafi  finite value 6,,(k—*)— = 7/2. The scattering data are pre-

C. Numerical results
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0.3 — . T — modes correspond to the translationai= +1) and rota-
% tional (m=0) symmetry of an infinite system, they have an

ber g w4 | exact analytical form:
—_ .- |
2 Ly ~. gsing, ~
S —] Uy =—_— vi=mé;, m=0x1 (39
£ 3 | . .
% . Unlike the case of half-local modes with=0,=1, all other
S o2l mjo‘ 2 _ zero-frequency solutions are nonlocal, and we are not able to
ﬁ e M=t ¥ construct exact expressions for them, but only the asymp-
@ ggt| T M2 totes forp>1:

m=+4
04} - mf-g a - ~ _ o 7P
osllmmmez |, &, DI, 510 @
"0 02 04 06 08 1 12 14

Wave number (kr, ) Nevertheless, we will see that the knowledge of asymptotic
) ) ) solutions like Eq.(39) will be enough to reconstruct the
FIG. 1. (Color onling Scattering data for different for small ,_jenendence of the scattering amplitude. In order to solve
wave numberskrv<l.3:. from‘contlnlljum. theory(hnes? anq from — ihe scattering problem in the long-wavelength limit we apply
discrete model numerical dl_agonallzatldeymbols) in circular a special perturbation theory, proposed in Ref. 24 and 41 for
square lattice systems of radti=15, 20, 25, 30, 35, and 40. the modes withm= =10, ané extending it for all values of

sented in Figs. 1 and 2. Comparison with the results of exaﬁ' We construct the asymptotes of such a solution for a small
diagonalization on finite systems shows very good agreeme ut finite frequency by making the ansatz

between the two approaches.

v(p)=vo(p)[ 1+ kas(p)+ K’as(p)], (408
IV. SCATTERING PROBLEM: ANALYTICAL ~ ~ )
DESCRIPTION u(p)=uo(p)[1+«B1(p)+ k“Bap)]. (400
A. Scattering at long wavelength Here a4,B1, and a,,B, are first- and second-order correc-

d | h . bl wtically i tions to the zeroth solutions, respectively. Let us insert this
In order to analyze the scattering problem analytically ingnqat7 into the set of Eq&36), multiply from the left with

the long-wavelength limit, we start from the zero-frequency ,~ . . . . .
solutions, when)=0. First note that for the special cases F.'<1P| without integrating; then one obtains equations for the
first- and second-order corrections:

m=0,*=1 there exist so-calledalf-bound statesRecall that
a zero-frequency solution of the ScHinger-like equation is

172 IT2NT —
called a half-bound state if its wave function is finite, but [p(avo+ Brug)I'=Pi(p),  k=1.2,
does not decay fast enough at infinity to be square integrable. —y o~ s
We will refer to such modes akalf-local modes These D(p)=2p{V(ug—vg) +2(W—1/2)uguo},

S R Dy(p)=p{—Uj+v5/2+2(W—1/2)(U5—vJ)
2t o .

+2V(U2B1—v3a1) + 2Ugu o[ (W—1/2)

g | X (a1t B1) =2Vl (41D
3 i
2 We are interested in the correctioAg, which will give us a
g | possibility to calculate the scattering amplitude. The formal
> 5| _ solution of these equations can be written as
s & m=-1 o
2 3 x m:01 , ~5
I g s | r ay(mvg(mdy
R | Pl ] Bu(p)=p(0)+ J —
- m=+4 0 UO( 7])
5 L| o m=-4 i
L o dy (7
-6 T — | ! 1 X g 1 + ~9 (Dk(f)dg (42)
0 05 1 15 2 25 3 35 4 0 nug(m)Jo

Wave number(kr, . . .
(k) Let us calculate the first-order correctign. It is easy to see

FIG. 2. (Color onling Scattering data for differenn for a wide  that the second right-hand si@@HS) term has an exponen-
region of wave numberk from continuum theorylines) and from tial decay ap— o, while the third one has a slow algebraic
discrete model numerical diagonalizatisymbols. decay only. Thus, far from the vortex core we have simply
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p—Z\m\ % through the cylindrical functions of integer ordém|, as
B1(p)=const- —r—- 2 ®,4(£)dé, (43)  done in Ref. 31. After that in the regiorp<1 we are able to
use the asymptotes of the cylindrical functions at the origin;
valid in the regionp>1. we arrive at the formula
To calculate the second-order correctiBp, let us note » 2 )
that the last RHS term of Eq42) is divergent forp—oe, U(p)=plml 1— Kkp % |n(ﬂ)
while the integral witha, has an exponential decay, like the mpI=p 4(|m[+1) 2|m|

first-order correction. To derive the divergent inner integral

in Eq. (42) we add and subtract the function — M(i)zm - K_Zsm}
™ a|m| 4|m| '
[£7ug]"  [sin’6oug)’
d =— - . 44 |m|—1
<O a(m+ D 2m 4 Sp=ytlm S, (50)

. N . : =1 n(m|—n)’
Then we arrive at an approximation f85(p) in the impor- i=1 n(lm|=n)

tant regionp>1: wherey is Euler’s constant.
Comparing this expression with the perturbation theory

Bo(p)=const- p’ B Inp B P_Zlml results[see Eqs(40b), (43), and (45)], in the region Xp
2 4(Im|+1) 2|m| 2|m| <1/k, where both are valid, we can restore the general de-
. pendence of the scattering amplitude in the long-wavelength
x f [@5(£) - @L(£)]dé. (45 ~ @pproximation:
0 2|m| 2ml+1
Now we are in position to compare the magnon amplitude om(k)= _Am(E + mBm(E) ’ (51a

U= Ug(1+ kB1+ k%B,) with the scattering approach in or-

der to extract the information about the scattering amplitude o
om(k). To describe the scattering problem in the long- An= | 2] [Do(6)—DP(£)]dE,  (51b)
wavelength approximation we rewrite the differential prob- S“(|m| )
lem (30) for large distancescp>1, only considering the
termg Wlth K . Ir? this scatterlng approach the oscillating Bo=— zJ’ ®,(£)de. (510
function u,,, satisfies an equation m(|ml!)
2 Equation(51a solves the scattering problem except for fac-
V22— _)ij 0, 1?=m?—«2 (46)  tors Ay, andB;,. These factors can be found by the numeri-
P p? cal integration of Eqs(51b) and(510), using numerical data

for Uy andv. Thus, solving the equations for zero-modes

The solution of this equation can be written as
once, we compute the whole dependengg ). Neverthe-

TJm(p)OCJh,‘(Kp)+5’,,(K)Y|,,‘(Kp) less, in order to discuss the analytical behavior let us note
that for sufficiently large values dim|, we can limit our-
1 lv|m 7 - selves to the contribution of the term with§ in the function
” \/_;COS< Kp=omT g Tom)s “7) @, and the term wittu3g3; in the function®,, see Eq(41).

To calculate the integrals we need to have more information
where the index of the Bessel and the Neumann function igpout the zero-modes. At small distanges1 the isotropic
noninteger. It results in a value f, which differs from the  (exchangg approximation works correctly, which leads to
real scattering phase shif,. Using asymptotic expansions the following solutions®
(3439 and (47), the desired relation between the phase shift B ~
and’3,,, can be written as Uop™ sinfg, o p

m] = v] Such solutions have the correct asymptotic behavior at infin-
. (48) ity and at the origin. Our numerical calculations justify the
2 correctness of these assumptions fiee-1; as a result we

In the lowest order approximation ir, the corresponding ©btain analytical estimates for these factors:
relation for the scattering amplitudes has the form
18(2|m|—1)! 4 (2|m|—1)!

By~ ————. (52
(Im[H)?

To compare the scattering results for different modes, we

To compare the scattering soluti¢fi7) with the result of the  write explicitly the asymptotic expressions for all modes,

perturbation theory we can expand the cylindrical functionstaking into account Eq(518, and asymptotes for half-local
in powers of the small quantityr|—|m| and represent modes from Refs. 24 and 41,

Iml+1p7
0.

Sm(K)=38,(K)+

~ i A im0
Um(K)=UV(K)—m- (49 :

054429-8
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T - Jim(kp)+ oY im(&kp)
Um=0(K)~_§K2 In(1/x), (539 |‘I’>~H mit P O Tim P ,  when p>1.
Kim|(kp)
(550
O +1(K)=~ :¥, (53  We see that the functions andv have independent asymp-

totes at the origin55b) and at infinity (55¢). It means that
the role of the “coupling potentialW in the scattering prob-
lem (55) is unimportant here. Therefore one can neglect the
coupling potential and formulate the scattering problem for
the master functiom only

In the main approximation iw the scattering picture con-
tains doublets for modes with opposite signsnoffor the [—V§+um(p)]1]m:;<zﬁm, (56)
modes with|m|>1. The splitting of the doubletithe last _ o
term in Eq.(530] appears in the next order i The split-  Where the partial potential is
ting of the doublets for the magnon modes on the vortex 1 ml2
background with givem= *n was mentioned in the earliest 7/ () =14,(p)+V(p)=U(p)— = +|[A(p)- el- _} _
papers on vortex-magnon scatterfitd? but it was ex- 2 p
plained, in fact, only foorm=+1.2* Qur considerations on (57)
the basis of Eq(13) show that the splitting of the scattering It is natural to suppose that the WKB approximation is
data is the direct analog of the Zeeman effect for electroryalid for this case. We use the WKB method in the form
states splitting in an external magnetic field. To follow this Proposed earlier for the description of the scattering for iso-

analogy one can rewrite the splitting const&atin the form  tropic 2D magnet$? and generalized after that for any sin-
gular potential$® We start from the effective 1D Schro

2|m|
+mB,,

Tmro21(K)= Am(g (530

K 2lm|+1
2

» dinger equation for the radial functiom,(p)= ¥ (p)/\p,
By f L deEMAE) e, which yields "
hence the splitting appears only in the effective magnetic d? 5
field, which is described by the vector potental - d_p2+ueff(p) Y= K" m,

Using scattering result&3) one can solve the scattering
problem for a plane spin wave in the for85). In the long- 1
wavelength limit the maximum scattering is related to the Uoii(p) =Un(p) — —.
translation modes wittm= 1, which gives the scattering 4p?
function (35b) in the form

(58)

The WKB solution of Eq.(58), i.e., the 1D wave function

KB leads to the following form of the partial wave
K simia
Flx)= e’ siny.

(54)
WKB 1

~wke_¥m
In this approximation the scattering is anisotropic, and the " Vo VpP(p)
total scattering cross section &= 72«k/4. To explain the ) ) ]
origin of the anisotropic scattering, let us mention that theVhere P=yx“—Ueyr. Analysis shows that Eq59) is valid
plane spin wave makes a spin flux, which influences thdor p>&, wherea is the turning point. The value af cor-
vortex as a whole, trying to move it by exciting translational 'éSponds to the conditiorP(a)=0, which results ina
modes. It is well known that the vortex dynamics appears irr~|M|/«x<1. We assume that the paramegy satisfies the
the gradient of a magnetization field like the magnon ffix. conditiona<po<1.
The dynamics of the vortex has a gyroscopical behaigiee On the other hand, at small distanges1, the partial
Ref. 4: acting along thex axis, the spin wave causes the potentiallf, has the asymptotic form
translational motion of the vortex along tlyeaxis, which
results in Eq.(54). v

COS

Xo+ fpﬂp')dp'), (59

Po

B. Scattering problem for short wavelength
For largek, in the main approximation to lowest order in v=m-— I'mO{P[A(P) - Jt=m+ap, (60)
1/k, the scattering problert86) can be rewritten in the form P
therefore one can construct asymptotically exact solutions

H|W) = — 2| W), (559 (recall that we supposg=p=1)
_ Jepp™ Y, Uy djme1)(kp)  when p<1. (61)
P~ h <1 . .
) plm=1l | When p=2, 5D o x>|m| there is a wide range of values pf namely,
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|m|/k<p<1, (62)

where we can use the asymptotic expresSiéor the Bessel
function (61) in the limit kp>|m|:

1

Jp
(63

In the range of Eq(62) the solutiong59) and (63) coincide

m+ 1|7 w+4|m+1|2—1
2 4 '

Upyoc —=cos| kp—

8kp

due to the overlap of the entire range of parameters, so one

can derive the phasg, in the WKB solution(59),

Im+1|7 = 4/m+1/>-1

Xo= KpPo— 2 4

8kpo

Therefore, we are able to calculate the short-wavelengt

PHYSICAL REVIEW B69, 054429 (2004

3 T T T T s
2+ 8. 1
CHENS & N .
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e T el o s 0
T 0P e -
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)
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2 —-%--- m=0 a
§ ke =1
» 2 r| - m=t2 A E
- M=+4
B o m-d a 1
s M=3
e m=-2
4 r : ! . .
0 0.5 1 1.5 2 25 3

h

Wave number (kr, )

asymptotic expression for the scattered wave phase shift by

the asymptotic expansion of the WKB soluti¢sn)

_ P Im7
Om( k)= lim P(p")dp" +xo—kp+ ——+ 4
p—® PO
am’—-1
— . (64
8kp

Under assumed conditiorkp>1, the WKB integral in Eq.
(64) can be calculated in the leading approximation ikpl/

p 1 (r
f P(p")dp'~K(p—po)— ZJ Uei(p")dp".
Po PO

As a result, the scattering phase shift for large wave num
bers,k>1, has the form

2

14
um(p)_ _2 dp1
P

1 ©

Om(K) = Opm(*)— Zfo
with the limiting value
a a

Om(®) =~ §(|V|—|m|)= — 5sgn.(m),

1, m=0

-1, m<0. (65)

ng(m)=’

FIG. 3. (Color online Scattering data for different for the
short-wavelength limit: from asymptote$7) of the continuum
theory (lines) and from discrete model numerical diagonalization
(symbols.

K

- Dy+mD,” (67)

Om(K)
This linear divergence is well pronounced in the numerical
results, see Fig. 3. To understand the origin of this diver-
gence let us go back to E¢65). One can see that the scat-
tering phase shift &— < does not vanish for potentials with
inverse square singularity at the origin, witt¥ m, see Eq.
(60). This is possible only in the magnetic field, which has
Singular behavior likeA|~ 1/p.

Let us look for the consequences of this unusual behavior
of the scatteringg,,— * . We consider the scattering prob-
lem for a plane spin wave in the fori85). In the short-
wavelength limit the WKB results for the phase sli6) are
available. One can see that the scattering functigbb)
tends to zero very quickly for large wave numbefg,y)
=0O(x %), so there is no real divergence or singularity for
a physically observable quantity such as the total scattering
function F at large energies.

C. Levinson theorem

Now we can compare the scattering results in the long-

Calculating the integral we obtain the phase shift in the formand short-wavelength limits. The scattering is absent for the

ar D1+mD2
Om(K)=— Esgm(m)+ —

X
* 1—cosé,

D2=j —dp~1.38,
o p

1

4

3 sirfé,

p?

1= +3 CO§00+(06)2]dp~2.44,

(66)

The corresponding amplitude of the vortex-magnon scatterin this sense values,,= w/2 and é,,

ing is

limit k—0. However, the scattering amplitude has a linear
divergenceock for sufficiently large wave numbers, see
Eq. (67). All these results were verified by the numeri-
cal calculations for continuum limit and for finite-sized
discrete lattice systems, see Figs. 1-3. According to our
analytical calculations, see E@65), the phase shift for
the short-wavelength limit tends to the finite valdg(«)

= —sgn, (M) /2. This result corresponds to the numerical
data, see Fig. 4, except for the mode witl- — 1, where the
numerical data gives,,- _1(e°) = — 7/2. However, we need
to note that the phase shift is determined with respeet,to

— /2 are identical.
What is physically important is how,,(«) changes from
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() m<-1 51(0)— 81(0)=7N°+ 7. (69b)
05 s —
0.5 = . | For the 2D EP FM, the scattering picture is much more com-
T 04r 1 plicated. First, we have no standard Sahinger equation,
::‘f 035 but the generalized one, E(L3). This becomes apparent at
< sl ' | most in the threshold behavior for the half-bound states, and
g the contribution of the half-bound states in the fo(@9hb)
g 0251 may be not adequate, see below. Second, because of the role
2 o2t ] of the effective magnetic field, there appearsvadependent
% 045 | | potential: the symmetryy,(x) = &_m(x) is broken, so it is
8 o1l | not enough to take mto account_partlal waves vymhao
) only. As a result Levinson’s relatiof69a has a different
0.05 L 1 form for the opposite signs oh.
o L— . ! . . L Thus, except for the case of half-bound states one can
0 15 2 25 3 35 4 hope that the Levinson theorem is adequate. However, we

Wave number (kr, ) see that the total phase shifi8) contradicts the Levinson
theorem in the form(69). The reason is that the partial po-

(&) m=x-1 tential i, in the Schrdinger equation56) has an inverse
L T T T square singularity at the origi/,~ v%/p?, where v=m
2 5 g ] +qp, see Eq(60). Such a situation changes the statement of
= P, T S the Levinson theorem. As we have proved recently in Ref.
S 01t - ™ 32, the generalized Levinson theorem for the Sdhmger-
E E : 5 like equation for potentials with such singularities has the
& ' form
E; 02t
o
2 ‘
% _03 L : 4 . b o
g T On(0) = (=) = mNp+ (|| —[m]). (70
Q m=0
D g || lm=;_ ]
. An additional 7= can appear on the RHS of this equation, if
Pl—=— R the half-bound states exist for tipewave (m|=1), see Eq.
0 05 1 15 2 25 3 35 4 (69b). To explain the meaning of the extra terrn/@)(|v|
Wave number (kr, ) —|ml) in the generalized Levinson theorei@0), recall that

_ _ _ _ in the partial wave method the scattering data are classified
FIG. 4. (Color onling Scattering phase shifts for differemt 1o 5zimuthal quantum number which is the strength of
Numerical results from the continuum theory. the centrifugal potential. In the presence of a partial potential
with an inverse square singularity at the origin suchifgs
, , ~1?[p?, the effective singularity strength is shifted by the
small to largex. According to our numerical results, the total | | o |v|—|m|, which results in a change in the short-
phase shift can be described by the formula wavelength scattering phase shift by/2)(|m|— | v|).
Let us compare the predictions of the generalized
Levinson theorem (70), which is suitable for the

v
Eng(m)’ m# -1 Schralinger-like equation, with our results for the vortex-

Om(0) = O(°) = (68)  magnon scattering problem in the 2D EP FM, which can be
21 m=— 1. described by the generalized Scattimger equation(13). In
2 our case the singular potential is caused by the specific sin-

It is well known that the total phase shift is related to thegular magnetic field at the origifA|~ 1/p, which results in
number of bound states?, according to the Levinson theo- v=|m+1|. The system has no bound stat&§=0, there-
rem from the scattering problem for a spinless quantumfore Eq.(70) takes the form
mechanical particle without a magnetic field. This theorem
was originally proved by Levinson for the 3D case, see Ref.

7 : . , -
rSe‘:’Ja.ld'léQigwo dimensional version of the Levinson theorem 5(0) = S (0) = Zsgn.m. (71)

Sin(0) = Sy(0) = NP, (698  Our numerical result§68) correspond to this formula for all
modes withm# — 1. The cause is the influence of the half-
If there exist half-bound statesee notations in the Sec. bound states. By comparison of E¢g1) and(68), one can
IV A) for the p wave (m=1), this is modified t&*4° adapt the generalized Levinson theorem for this case. It reads
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S(0)— 8n() features of the magnon scattering are connected with the spe-
cial role of the effective magnetic field, which is created by
the vortex. This effective field acts on magnons in the same
way as a magnetic field influences an electron, leading to the
= appearance of the Lorentz force and the Zeeman splitting of
b a _ . . .
aNP+ 7+ —(|v|—|m|) whenm=-1. the magnon states with opposite values of the azimuthal
2 numbersm. The singular behavior of the effective magnetic
(720  field at the origin causes a divergence of the scattering am-
plitudes for all the partial waves; we have confirmed this
study by a generalized version of the Levinson theorem for
potentials with inverse square singularities.
Our investigations can be applied to the description of the

by T h _
77Nm+2(|v| |ml) whenm=# —1

Let us compare this result with E€G9). An extrasr, which
appears for the modm= —1, is connected with the half-
bound states, see E9b). To explain the situation, let us

stress again that our scattering problem is formulated not fof e ma| dynamics of vortex state magnetic dots; the theory of
the standard Schdinger equation. However, the problem o yortex-magnon scattering developed here could be a
has a symmetry such that one eigenfunction becomes a Mg guide for the study of the normal modes in vortex-state
ter function, while the other is a slave. This makes it poss'bl%agnetic dots. It is clear that the EP FM cannot correspond
to use _the main features of the standard qu::mtum-mech(:micatlj&mtitaﬁve|y to the case of vortex-state magnetic dots,
scattering theory. The appearance of the half-bound states {Gere the anisotropy is negligible and the static vortex struc-
connected with the symmetry of the whole system, and botly ¢ is stabilized by magnetic-dipole interactions. We did not

of the eigenfunctions are important. In the system there arg,nsjder this type of interaction in this paper, as it is difficult

three half-local modes, see E@8). According to EqQ.(72) 5 account for. Nevertheless, we believe that the main fea-
only one of the hal-bound modes, namely, the mode withyres of the problem studied above are generic. For example,
m=—1, gives an extrar to the Levinson's relation. More 5, effective magnetic field exists due to the topological prop-

generally, this extra contribution corresponds to the halfgpties of the vortex only. Furthermore, we expect the appear-

bound mode witim=—qp, see Eq(60). This result cannot  5ce of modes with anomalously small frequencies, e.g., the
be explained in the framework of the Levinson theorem forygge of the translational oscillations of the vortex center.

the standard Schdinger equation, where both half-bound The nonzero frequency of this mode is caused by the inter-

states withm=+1, andm= —1 should make contributions ctjon with the boundary only. Additionally, the splitting of

to the Levinson’s relation. The correspopding analog of thgnhe doublets for modes with oppositeshould appear due to
Levinson theorem for the generalized Sainger equation  he role of the effective magnetic field.

(13) takes into account the contribution of the half-bound
state for onlyonevalue ofm, namely, form=—qp. ACKNOWLEDGMENTS
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