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Abstract
We develop an approach to treat magnetic energy of a ferromagnet for arbi-
trary curved wires and shells on the assumption that the anisotropy con-
tribution greatly exceeds the dipolar and other weak interactions. We show
that the curvature induces two effective magnetic interactions: effective
magnetic anisotropy and an effective Dzyaloshinskii-like interaction. We
derive an equation of magnetization dynamics and propose a general static
solution for the limit case of strong anisotropy. To illustrate our approach, we
consider the magnetization structure in a ring wire and a cone surface: ground
states in both systems essentially depend on the curvature, excluding strictly
tangential solutions for a cone surface even in the case of strong anisotropy.
We derive also the spectrum of spin waves in such systems.
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(Some figures may appear in colour only in the online journal)

1. Introduction

An interplay between the topology of the order parameter field and the geometry of the
underlying substrate attracts the attention of many researchers in the modern physics of
condensed matter and in field theories. One of the well-known examples of the nonlinear
vector field model is a general Ginzburg–Landau vector model with the energy functional [1]

 ∫= +x u u uE Vd [ : ( )] (1)
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for the vector order parameter = ( )u u u u, ,..., n1 2 in the multidimensional real space ∈ x d,
where double-dot denotes a scalar product in both real and order parameter spaces. If
transformations of the order parameter and transformations of the real space are independent,
the double-dot scalar product is computed in such a way that the vector components in both
spaces do not mix:    =u u G u u: ij

i j, with Gij being a metric tensor of the order
parameter space. A behaviour of vector fields in a curved space [2, 3] becomes more
sophisticated due to the intimate relation between the geometry of the substrate space (x
-variable) and the geometry of the field (u-variable). In most studies the vector field was
supposed to be strictly tangential to the curved substrate. For example, this assumption was
used when the role of curvature in the interaction between defects was studied in two-
dimensional (2D) XY-like models, which can describe thin layers of superfluids, super-
conductors, and liquid crystals deposited on curved surfaces [4].

Nowadays there is a growing interest in low-dimensional magnetic objects such as
magnetic nanoshells and nanowires. This interest is supported by great advantages in
nanotechnology, including numerous magnetic devices (high-density data storage, logic,
sensing devices, etc). The theoretical description of the evolution of magnetization structures
in such systems is based on the dynamics of a three-dimensional (3D) vector order parameter,
such as magnetization unit vector m in a constrained physical space, e.g., a quasi 2D
nanoshell and a quasi one-dimensional (1D) nanowire. The interrelation between the topo-
logical properties of magnetic structures and the underlying curvature complicates an ana-
lysis; nevertheless, it can be a source of new effects. For example, π2 -skyrmions can appear
in Heisenberg isotropic magnets due to a coupling between the magnetic field and the
curvature of the surface [5]; in easy-surface Heisenberg magnets, the curvature of the
underlying surface leads to a coupling between the localized out-of-surface component of the
magnetic vortex with its delocalized in-surface structure [6]. It is well known that the cur-
vature of the system can induce an additional effective energy contribution, a so-called
‘geometrical potential’: In a seminal paper [7] da Costa developed a quantum mechanical
approach to study the tangential motion of a particle rigidly bounded to a surface. Similar
‘geometrical potential’ appears in 1D curved quantum wires [8]. Effects of effective aniso-
tropy induced by the curvature were also discussed for quasi 1D curved magnetic nanowires
of particular geometries [9, 10]. In general, the influence of the ‘geometrical potential’ is
‘proportional to the second degree of curvature of the system’ [8]. In spite of numerous results
on the behaviour of a vector field in curved systems (see, e.g., review articles [2, 3],) the
problem is not fully understood. In particular, the 3D vector field in a majority of studies was
assumed to be rigidly bound to the surface in the case of magnetic shells or to the curve in the
case of magnetic wires.

Very recently we have developed a fully 3D approach for thin magnetic shells of arbi-
trary shape [11]. In this paper we extend this approach for both 2D shells and 1D wires. We
base our study on the phenomenological Landau–Lifshitz equation

ω δ
δ

∂ = ×m m
m
E

, (2)t 0

which describes classical magnetization dynamics. Here E is the total energy normalized by
πM4 s

2 with Ms, being the saturation magnetization. The characteristic time scale of the system
is determined by the frequency ω πγ= M4 s0 0 , with γ0 being the gyromagnetic ratio. The
damping is neglected. For an arbitrary orthogonal basis e e e{ , , }1 2 3 one can parameterize the
unit magnetization vector as follows
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θ ϕ θ ϕ θ= + +m e e esin cos sin sin cos , (3)1 2 3

where angular variables θ and ϕ depend on spatial and temporal coordinates. Within the
angular representation (3), the equation of motion (2) reads

θ ϕ ω δ
δθ

θ θ ω δ
δϕ

∂ = − ∂ =E E
sin , sin . (4)t t0 0

The total energy of the magnet can collect different contributions such as energies of
exchange, anisotropy, and dipolar one. In the following we consider a hard magnet where the
anisotropy contribution greatly exceeds the dipolar and other weak interactions. Therefore in
the current study we restrict ourselves to the consideration of Heisenberg magnets. In this case
the total energy functional has the following form:

∫ λ= ℰ + m nE V ℓd ( · ) . (5)2
ex

2⎡⎣ ⎤⎦
Here the first term describes the isotropic exchange interaction (see below, equation (9)), with

π=ℓ A M(4 )s
2 being an exchange length and A being an exchange constant. The second

term in (5) is the energy of anisotropy. The unit vector n gives the direction of the anisotropy
axis, λ is a dimensionless anisotropy constant, and integration is performed over the sample
volume V.

An important point is that the vector n r( ) is a function of spatial coordinates in accor-
dance with the geometry of the curvilinear sample. For example, if n is normal to a curvilinear
shell and λ > 0, then we have a case of easy-surface anisotropy; if n is tangential to a
curvilinear wire and λ < 0, then we have a case of easy-tangential anisotropy, etc. Actually,
this is one way of how the curvature is introduced to the problem.

Anisotropic curvilinear systems (5) with a nontrivial topology are of particular interest,
since topologically nontrivial magnetization distributions are inherent here. Examples are
magnetic vortices in easy-surface spherical shells [6], and magnetic domains in Möbius rings
with easy-normal anisotropy [12, 13].

A natural way to look for magnetization distributions in the curvilinear systems is to
proceed to the corresponding curvilinear basis. However, the representation of the exchange
contributionℰex in an arbitrary curvilinear frame of reference is quite a challenge. Previously
this problem was solved for a couple of simple geometries, namely, cylindrical [14] and
spherical [6]. In the present work we propose a general approach to derive the exchange
energy for arbitrary curvilinear 1D and 2D systems (curved wires and curved shells) and an
arbitrary magnetization vector field, not necessarily tangential to the surface, as it was
recently considered for nematic shells [15, 16]. We show that in curvilinear systems there
appear two effective magnetic interactions: (i) curvature-induced effective anisotropy, which
is bilinear with respect to the curvature and the torsion and is similar to the ‘geometrical
potential’, (ii) curvature-induced effective Dzyaloshinskii-like interaction, which is linear
with respect to the curvature and the torsion.

The paper is organized as follows. We derive the energy of the curved 1D wire in
section 2; our approach is illustrated by the calculation of the ground state of a highly
anisotropic curved wire. In section 3 we discuss the role of the effective anisotropy and the
effective Dzyaloshinskii-like interaction for a 2D curved shell. We consider two applications
of our theory: the ground state of the narrow ring wire and the spectrum of spin-waves are
calculated in section 4, and the spin-wave spectrum for the cone shell is derived in section 5.
In section 6 we present some remarks about possible perspectives. Another representation of
the energy of 1D wire is proposed in appendix.
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2. Energy and curvature-induced effective fields for a curved wire

We start with a 1D case and consider a thin nanowire whose transverse size is small enough to
ensure magnetization uniformity along the crosswise direction. One can describe a wire using
the Frenet–Serret parametrization for a 3D curve γ . We use its natural parametrization by arc
length s of general form γ γ= s( ). In Cartesian basis ∈x x y zˆ { ˆ , ˆ , ˆ}i , one can parameterize the
curve as γ γ= x̂i i. The Einstein summation convention is used here and everywhere below. Let
us introduce the local normalized curvilinear basis (Frenet–Serret frame):

γ= ′ =
′
′

= ×e e
e

e
e e e, , (6)1 2

1

1
3 1 2

with e1 being the tangent, e2 being the normal, and e3 being the binormal to the curve γ . Here
and below, the prime denotes the derivative with respect to the arc length s. Note that
γ∣ ′ ∣ =s( ) 1 in the natural parametrization. The differential properties of the curve are
determined by the Frenet–Serret formulae:

κ
κ τ

τ
′ = = −

−
α αβ β αβe eF F,

0 0
0

0 0
, (7)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where κ is the curvature of the wire and τ is its torsion. Latin indices =i j, 1, 2, 3 describe the
Cartesian coordinates and the Cartesian components of vector fields, whereas Greek indices
α β =, 1, 2, 3 numerate the curvilinear coordinates and the curvilinear components of vector
fields.

After defining the 3D curve, one can parameterize a physical wire with a finite crosswise
size. We take γ s( ) as the central curve of a wire. Then the space domain filled by the wire can
be parameterized as

γξ ξ ξ ξ= + +( )r e es s, , ( ) , (8)2 3 2 2 3 3

where ξ ξ ξ= ( , )2 3 are coordinates within the cross section ξ∣ ∣ ≲ h, with h being the wire
thickness. The assumption of the magnetization one-dimensionality can be formalized as

=m m s( ). This assumption is appropriate for cases when the thickness h does not exceed the
characteristic magnetic length. We also suppose that κ τ≪h 1 , 1 .

We base our study on the the energy functional (5). In the Cartesian frame of reference,
the exchange energy density has the form

 ℰ = ( )( )m m . (9)i iex

Now one can express the Cartesian components of the magnetization vector mi in terms of the
curvilinear components αm as follows

= α α( )e xm m · ˆ . (10)i i

Then we substitute this expression into ℰex and apply a del operator in its curvilinear form,
 ≡ ∂e s1 . Finally the energy density in the Frenet–Serret frame of reference reads

ℰ = ′ ′ = ℰ + ℰ + ℰα α β βe em m a( ) ( ) . (11 )A D
ex ex

0
ex ex

Here the first term describes the common isotropic part of the exchange expression, which has
formally the same form as for the straight wire

ℰ = ′ ′ = ′α α mm m b. (11 )ex
0 2
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The second term ℰA
ex describes an effective anisotropy-like interaction,

κ κτ
κ τ

κτ τ
ℰ = = =

−
+

−
αβ α β αβ αγ βγ αβK m m K F F K c, ,

0
0 0

0

. (11 )A
ex

2

2 2

2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

Components of the tensor αβK are bilinear with respect to the curvature κ and the torsion τ;
they play the role of effective anisotropy coefficients, induced by the curvature of the wire. In
some sense it is similar to the ‘geometrical potential’ which an electron experiences in a
curved quantum wire [8]. Note that an effective ‘geometrical’ magnetic field was calculated
recently in curved magnonic waveguides [9]. As opposed to previous studies, we will show
below that the curvature and torsion can cause a new magnetization ground state, which is
absent in the straight case.

The last term (11c) is a combination of Lifshitz invariants

ℰ = ′ − ′αβ α β α β( )F m m m m d(11 )D
ex

and therefore can be interpreted as an effective Dzyaloshinskii interaction [17, 18]. The tensor
of coefficients of this effective Dzyaloshinskii interaction αβF is exactly the Frenet
transformation matrix (see (7)), which is linear with respect to the curvature κ and the
torsion τ. Due to the linear form, this term can cause phenomena that depend on the sign of κ
and τ.

Using the angular notations (3), one can rewrite the energy terms as follows:

θ θϕ
κ θ τ θ ϕ τ ϕ

ϕ κ θ τ θ ϕ τθ ϕ

ℰ = ′ + ′
ℰ = − +

ℰ = ′ − − ′( )

sin ,

( sin cos cos ) sin

2 sin sin 2 cos 2 sin . (12)

A

D

ex
0 2 2 2

ex
2 2 2

ex
2

Finally, by summing up all terms in (12), we get

θ τ ϕ θ ϕ κ τ θ ϕℰ = ′− + ′ + −[ ] ( )sin sin cos cos . (13)d
ex
1 2 2⎡⎣ ⎤⎦

Note that the exchange magnetic energy of a curved wire was recently calculated in reference
[19]. However, curvature effects were ignored, and the exchange energy was written in the
form ℰex

0 . For some applications, e.g., studying domain wall dynamics, it is useful to rewrite
the energy (13), using another angular parametrization, where the polar angle θ is counted
from the tangential direction (see appendix).

Let us take into account the anisotropy term in (5). We choose the anisotropy axis along
the central line of the wire, =n e1. The total energy density, according to (5) has the form:

λ θ ϕℰ = ℰ +ℓ sin cos . (14)d d1 2
ex
1 2 2

This developed approach enables us to obtain a general static solution for the high-
anisotropy case. We consider a physically interesting case of easy-tangential anisotropy
λ < 0, which favours the magnetization distribution tangential to the wire. In the strong
anisotropy limit, the magnetization is quasitangential; therefore θ π ϑ= +2 , and
ϑ ϕ∣ ∣ ∣ ∣ ≪, 1. Then the total energy density can be rewritten as follows

  
τκϑ κ ϕ λ ϑ ϕℰ ≈ ℰ + − ′ + + +

ℰ

( )( )ℓ2 const, (15)d1
ex
0 2 2 2

F
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where the first summand is the energy density of a strictly tangential distribution, and the
second summand can be written as ℰ = − F m( · )F . Therefore one can consider it as an
interaction with an effective curvature-induced magnetic field

κ τκ= ′ +( )F e eℓ2 , (16)2
2 3

and the last summand in (15) represents the anisotropy contribution. Minimization of the
energy functional (15) with respect to ϑ and ϕ results in

 θ π
λ

κτ
λ

ϕ
λ

κ
λ

= − + = ′ +ℓ ℓ

2

1
,

1
. (17)

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

According to (17), the strictly tangential solution is realized only for a specific case τ = 0 and
κ′ = 0. Note that in the main part of recent studies of magnetization states in curved
nanowires, only the tangential magnetization distributions were considered [9, 10]. The
solution for the ground state of 1D magnets (17) is in agreement with recent results for 2D
surfaces [11].

3. Energy and the curvature-induced effective fields for a curved shell

In this section we consider the curvature-induced effects in a magnetic nanoshell using a thin-
shell limit. We describe a shell considering a surface ς ξ ξ⃗ ( , )1 2 , with ξ1 and ξ2 being local
curvilinear coordinates on the surface. In the Cartesian basis ∈x x y zˆ { ˆ , ˆ , ˆ}i , one can para-
meterize the surface as ς ς⃗ = ⃗ x̂i i. We define the local curvilinear basis as follows:

ς= = = × = ∂μ μe
g

g
e

g

g
e e e g, , , , (18)1

1

1
2

2

2
3 1 2

where ξ∂ = ∂ ∂μ μ, with μ = 1, 2. Similar to notations of the previous section, Greek indices
α β γ =, , 1, 2, 3 numerate curvilinear coordinates and curvilinear components of vector
fields. To indicate only in-surface curvilinear coordinates, we use Greek notations
η μ ν =, , 1, 2. We suppose that the surface curvilinear frame e e{ , }1 2 is an orthogonal one;
hence the surface metric tensor =μν μ νg gg · has a diagonal form, ∥ ∥ =μν ( )g g gdiag ,11 22 .
The local curvilinearity of the basis μe is determined by the second fundamental form

= ∂μν ν μe gb ·3 . The Gauss curvature is  = αβHdet( ), and the mean curvature is
 = αβHTr ( ) 2, with the Hessian matrix given by ∣∣ ∣∣ = ∣∣ ∣∣μν μν μμ ννH b g g .

The differential properties of the curvilinear basis are determined by the Gauss–Codazzi
equation

η
μν

∂ = +μ ν μν ηg e gb (19)3

⎧⎨⎩
⎫⎬⎭

with η
μν{ } being the Christoffel symbol.

Let us parameterize the ferromagnetic shell using the thin-shell limit. Considering the
surface ς ξ ξ⃗ ( , )1 2 as the central surface of a shell, we define a finite thickness shell as the
following space domain

ςξ ξ ξ ξ ξ ξ= +( ) ( )r e, , , , (20)1 2 3 1 2 3 3

where ξ ∈ −h h[ 2, 2]3 are the cross-section coordinates, with h being the shell thickness.
Similarly to the previous section, we use the assumption that the thickness h is infinitesimally
small and suppose that the magnetization does not depend on ξ3; hence ξ ξ=m m ( , )1 2 .
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In order to calculate the exchange energy of the shell, we start with the definition (9) and
substitute the Cartesian components of the magnetization vector mi in terms of the curvilinear
components αm , as follows = α α( )e xm m · ˆi i . By applying a del operator in its curvilinear
form  ≡ ≡ ∂α α α αα α

−e e g( ) 1 2 , we get the exchange energy in the form, similar to (11):

 ℰ = = ℰ + ℰ + ℰα αm m a· . (21 )A D
ex ex

0
ex ex

The first term is the isotropic part of the exchange expression

 ℰ = α αm m b· , (21 )ex
0

which has formally the same form as for the plane surface.
Similarly to the 1D case, the curvature manifests itself in the effective anisotropy-like

term ℰA
ex and the effective Dzyaloshinskii interaction term ℰD

ex as follows:

 

 

ℰ = =

ℰ = =
αβ α β αβ γ α γ β

αβγ β γ α αβγ α γ β

e e

e e

K m m K

D m m D c

, · ,

2 , · . (21 )

A

D

ex

ex

By using the Gauss–Codazzi equation (19), one can show that the components of the tensor
αβK have a bilinear form with respect to the components of the second fundamental form μνb ;

it emulates a ‘geometrical potential’ closely related to the potential that arises in the quantum
mechanical problem of the particle rigidly bounded to a surface [7]. The effective
Dzyaloshinskii interaction coefficients αβγD are linear with respect to the μνb components.
This effective interaction is a source of possible magnetochiral effects, such as the vortex
polarity–chirality coupling [6] and the interrelation between chiralities of the sample and its
magnetization subsystem for Möbius rings [13]. The effects of curvature-induced
magnetochirality were reviewed recently in reference [20].

Let us use the angular parametrization (3), with θ θ ξ ξ= ( , )1 2 being the colatitude and
ϕ ϕ ξ ξ= ( , )1 2 being the azimuthal angle in the local frame of reference. In terms of θ and ϕ,
the exchange energy density ℰex reads

 Γ Ω Γθ ϕ θ ϕ θ ϕ
ϕ

ℰ = − + − − ∂
∂

[ ( )] sin ( ) cos
( )

. (22)d
ex
2 2

2⎡
⎣⎢

⎤
⎦⎥

Here the vector Ω is a modified spin connection, Ω = μ μe e e( · )1 2 , and vector Γ is
determined as follows

  Γ ε ε εϕ ϕ ϕ υ ϕ= ∥ ∥ = + − −αβH( ) ( ) ( ) ( ), (23)2

where ε ϕ ϕ ϕ=( ) (cos , sin ) and υ = −H H Htan 2 ( )12 11 22 . Very recently we derived the
exchange energy for the curved shell in the form (22) in reference [11].

It is instructive to establish a link between the 2D energy (22) and the 1D expression
(13). For this purpose we define the surface σ ξ ξ( , )1 2 as a local extension of the curve γ s( ) in
the following way

ς γξ ξ ξ≡ = +( ) es s s, ( ) ( ). (24)1 2 2 2

By using the Frenet–Serret formulae (6) and (7), one can easily find the corresponding metric
tensor and the Hessian matrix. For points of the curve γ one has

τ τ= =
ξ μν ξ

μν
→ →

g Hlim diag(1, 1), lim adiag( , ). (25)
0 02 2

J. Phys. A: Math. Theor. 48 (2015) 125202 D D Sheka et al

7



According to (23) one can find that Γ γ τ ϕ= e( ) sin1 and the spin connection Ω γ κ= − e( ) 1.
Assuming now that the magnetization on the surface (24) depends on s only, one obtains
θ θ= ′ es( ) 1 and ϕ ϕ= ′ es( ) 1, and finally the 2D energy (22) takes the form (13).

Let us take into account the anisotropy term, starting from the energy functional (5) and
choosing the anisotropy axis =n e3, i.e., along the normal to the surface. Then the total
energy density of the shell is

λ θℰ = ℰ +ℓ cos . (26)d d2 2
ex
2 2

Similarly to the case of 1D nanowire, the general static solutions for the highly anisotropic 2D
shell can be obtained. As previously, this solution can be treated as a result of acting of an
effective curvature-induced magnetic field. Since this approach for the 2D case was already
discussed in reference [11], we limit ourselves with an example for a positive anisotropy
constant, namely λ ≫ 1. This corresponds to strong easy-surface anisotropy. In this case the
magnetization has a quasitangential distribution: θ π ϑ= +2 , with ϑ∣ ∣ ≪ 1. The total energy
density reads [11]

  Γ Ω Γ Ω Γ
ϑ λϑ

ϕ ϕ
ϕ

ℰ ≈ ℰ + +

ℰ = + − = + − ∂
∂

F

ℓ F ℓ

,

( ) , 2 · ( ) , (27)

d2 t 2

t 2 2 2 2⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

whereℰt is the energy density of the strictly tangential distribution and ϕF ( ) can be treated as
the amplitude of an effective curvature-induced magnetic field oriented along vector ε.
Minimization of (27) with respect to ϑ and ϕ results in

θ π
λ

ϕ
λ

= − +F
2

1

2
( )

1
, (28)

2

⎛
⎝⎜

⎞
⎠⎟

where the equilibrium function ϕ is obtained as a solution of the equation δ δϕℰ = 0t .
According to (28) the strictly tangential solution is realized only for a specific case ϕ ≡F ( ) 0.
Consideration of the case of strong easy-normal anisotropy (λ ≪ −1) can be found in
reference [11].

It is worth noticing here that the appearance of an effective Dzyaloshinskii-like inter-
action (or, in other words, Lifshitz invariants) in curved magnetic systems is inherently
coupled with the fact that, in contrast to the order parameter u in the Ginzburg–Landau
functional given by equation (1), the magnetization m is a vector which is transformed by
transformations of the real space. Formally it is expressed in equation (10), which shows that
the coupling between the Cartesian and curvilinear components of the magnetization vector is
space dependent, and therefore the action of the del operator on the corresponding coefficients
cannot be ignored.

4. 1D example: ground state and magnon spectrum for ring nanowire

As an example of our approach for curved magnets, we consider the magnetization dis-
tribution in the simplest curvilinear system with constant curvature and no torsion, i.e., a ring-
shaped wire (circumference). Using the arc length coordinate s, we put
γ κ κ κ κ= − −{ }s s s( ) cos ( ), sin ( ), 01 1 . Let us consider the case with easy tangential aniso-
tropy λ < 0. The total energy (5) of the wire with the area cross-section  has the form

 π λ κ= ∣ ∣ −E 2 1 , where
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 ∫π
θ θ Φ θ Φ χ= ϰ ∂ + − ∂ −

π
χ χ{ }( ) ( )1

2
sin 1 sin sin d . (29)

0

2
2 2 2 2 2 2⎡
⎣⎢

⎤
⎦⎥

Here we used the modified magnetization azimuthal angle Φ π ϕ= −2 , the angular variable
χ κ≡ s, the reduced curvature κϰ ≡ w, and the ‘magnetic’ length λ= ∣ ∣w ℓ . The
minimization of the energy (29) results in θ π= 2 and the azimuthal angle Φ, which
satisfies the pendulum equation

Φ Φ Φϰ ∂ + =χχ sin cos 0. (30)2

The homogeneous (in the curvilinear reference frame) solution corresponds to the planar
vortex state:

Φ π θ π= =
2

,
2

, (31)vor vor

which is well known for the magnetic nanorings [21, 22]; therefore, we name it a vortex
solution, and the parameter  = ±1 is called the vortex chirality (clockwise or counter-
clockwise). The energy of the vortex state  = − + ϰ1vor 2.

An inhomogeneous solution of the pendulum equation (30) reads

Φ χ χ
π

θ π= = =x k x k a( ) am( , ),
2

K( ),
2

, (32 )on on

where x kam( , ) is Jacobi’s amplitude [23] and the modulus k is determined by the condition

πϰ =k k b2 K( ) , (32 )

with kK( ) being the complete elliptic integral of the first kind [23]. The corresponding
magnetization solution is analogous to a well-known onion sate [21, 22] typical for the ring
geometry; hence we refer to (32) as the onion state. The energy of the onion state reads


π

= ϰ − ϰ −
k

k
k

4
E( )

1
, (33)on 2

2

where kE( ) is the complete elliptic integral of the second kind [23]. The equality of energies
 =vor on determines the critical curvature ϰ ≈ 0.657c , which separates the vortex state

Figure 1. Magnetization distribution of the ground state in a ring wire with different
reduced curvatures ϰ: (a) vortex state, (b) and (c) onion states (32).
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(ϰ < ϰc) and the onion one (ϰ > ϰc). The typical magnetization distribution is shown in
figure 1.

To analyse the magnons in the system, we linearize the Landau–Lifshitz equations (4) on
the background of θ π= 20 and Φ χ( )0 , which corresponds to the vortex state (Φ Φ=0

vor) or
the onion one (Φ Φ=0

on), depending on the curvature ϰ. For the small deviations ϑ θ θ= − 0

and φ Φ Φ χ= − ( )0 , we get the set of linear equations:

χ ϑ φ χ φ ϑ−ϰ ∂ + = −∂ −ϰ ∂ + = ∂χχ τ χχ τV V a( ) , ( ) , (34 )2
1

2
2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
where ∂τ is the derivative with respect to dimensionless time τ Ω= t0 , with Ω ω λ= ∣ ∣20 0 .
Here the ‘potentials’ χV ( )1 and χV ( )2 are as follows:

χ Φ Φ χ χ Φ χ= − ϰ − ∂ = −χV V b( ) sin 1 ( ) , ( ) cos 2 ( ). (34 )1
2

0
2

0
2

2 0
⎡⎣ ⎤⎦

We apply the partial wave expansion

∑ ∑ϑ χ τ ϑ χ Ωτ δ φ χ τ φ χ Ωτ δ= − + = − +
=

∞

=

∞

( ) ( )m m( , ) cos , ( , ) sin (35)
m

m m

m
m m

0 0

with m being the azimuthal quantum numbers, δm being arbitrary phases, and Ω ω Ω= 0

being dimensionless frequencies. Let us mention that equation (34) for the partial waves ϑm

and φm are invariant under the conjugation Ω Ω→ − , → −m m, δ δ→ −m m, ϑ ϑ→m m, and
φ φ→ −m m. In classical theory we can choose any sign of frequency; nevertheless, to make a
contact with a quantum mechanics with a positive frequency and energy ωℰ = ℏk k , we
discuss the case Ω > 0 only.

First we consider the magnons on the background of the vortex state (31). In this case
= − ϰV 11

2 and =V 12 . By substituting the expansion (35), into equation (34) one can
calculate the following spectrum of magnon eigenstates:

Ω ϰ = + ϰ + ϰ − ϰ( )( )m m( ) 1 1 . (36)m
vor 2 2 2 2 2

The lower eigenfrequencies are plotted in the figure 2.
In the limit case of a quasi-straight wire (ϰ → 0), the magnon frequencies read

Ω ϰ = − ϰ + ϰ + ϰ( )m O( ) 1
2

.m
vor

2
2 2 4

Thus the curvature decreases the gap as compared to the case of the straight wire ϰ =( 0) with
dispersion K KΩ = +( ) 1s

2, where K = ϰm is the corresponding normalized wave vector.
Let us consider now the magnons on the background of the onion state (32). By sub-

stituting Φ Φ=0
on into (34b) one can present the potentials χV ( )1 and χV ( )2 as the following

Fourier expansions [23]

∑ ∑χ χ

π

π

= + = +

= − ϰ + ϰ = ϰ
+

−
−

= − ϰ − = − ϰ
−

=

∞

=

∞

V A A n V B B n

A
k k

k A q
q

n

q

B
k k

k B
nq

q

cos (2 ), cos (2 ),

1 4
E( ) , 8

1

1

2

1
,

2 4
E( ) 1, 16

1
(37)

n

n

n

n

n
n

n n

n

n

n

1 0

1

2 0

1

0 2
2 2

2 2

0 2
2

2

⎡
⎣⎢

⎤
⎦⎥

where Jacobi’s nome q is given in terms of the modulus k by

π= − −( )q k kexp K( 1 ) K( )2 [23]. At critical point ϰc the nome ϰ ≈q ( ) 0.135c , and its

J. Phys. A: Math. Theor. 48 (2015) 125202 D D Sheka et al

10



value rapidly tends to zero with ϰ. Thus we can restrict ourselves with few lower Fourier
harmonics.

Now by substituting (35) and (37) into (34a) and multiplying the Fourier series, we get
the following set of equations

∑

∑

ϑ ϑ ϑ Ωφ

φ φ φ Ωϑ

ϰ + + + =

ϰ + + + =

=

∞

+ −

=

∞

+ −

( )

( ) ( )

( )m A A

m B B

1

2
,

1

2
, (38)

m

n

n m n m n m

m
n

n m n m n m

2 2
0

1

2 2

2 2
0

1
2 2

where the conventional rule =−∣ ∣ ∣ ∣f fn n is used for the amplitudes ϑn and φn.
We do not possess the exact solution of the infinite set of equation (38). As a first

approach, by neglecting the modes coupling one obtains

Ω = ϰ + ϰ +( )( )m A m B . (39)m
u( ) 2 2

0
2 2

0

The coupling results in the mixing of different partial waves. However, the influence of
coupling decreases with n due to the rapid decay of An and Bn; hence (39) provides a good
enough estimation of frequencies for not very small azimuthal quantum number m.

An exception is Ω = 0: in this case the zero (Goldstone) mode is realized due to the
arbitrary direction of the onion axis. This eigenstate has the following form

φ χ Φ χ ϑ χ Ω= ∂ ∝ = =χ x k( ) ( ) dn ( , ), ( ) 0, 0. (40)G on G G

Using the Fourier expansion of Jacobi’s function x kdn ( , ), one can easily see that the
Goldstone mode φ χ( )G contains an infinite number of partial waves; hence the coupling
between different partial waves for this mode is crucial. One has to stress that as distinct from
the vortex case, eigenstates on the background of the onion state do not coincide with partial
waves: each eigenstate with eigenfrequency Ωn corresponds to a set of partial waves with
different azimuthal quantum numbers m due to the coupling. The lowest eigenfrequencies,
calculated using (38) with account of only the four lowest partial waves Ωn, are plotted in
figure 2.

Figure 2. The lowest eigenfrequencies of linear excitations in a ring nanowire
depending on the curvature ϰ.
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The spectrum of the narrow nanorings is well studied experimentally [24, 25]. It should
be noted that for typical experiments ring radii R are about hundreds of nanometres, while the
typical magnetic length w is about 10 nanometres; hence the dimensionless curvature
ϰ ≈ ≪w R 1. That is why in most experiments the ground state of the ring is the vortex state,
and the onion one appears only under the influence of an external magnetic field [21].

One has to stress that we do not discuss here the influence of the dipolar interaction on
the magnetization structure, supposing that the thickness is much smaller than the exchange
length. Nevertheless it is instructive to compare our results for the critical curvature ϰc with
the boundary between different phases in magnetic rings. Our case of circumference–wire
corresponds to the very narrow ring. It is well known [26] that depending on the geometrical
and magnetic parameters of the nanoring, there exist different magnetic phases in a magne-
tically soft ring: easy-axis, easy-plane, and planar vortex phases. The lowest bound for the
vortex state magnetic ring is given by the triple point ≈R ℓ 3(tr ) for the infinitesimally
narrow ring [26]. For rough estimation of the critical curvature we can simply replace the
magnetic length w by the exchange length ℓ; hence ϰ ≈ = ≈ℓ R 1 3 0.577(tr ) , which is
close to ϰ ≈ 0.657c . One has to note that the monodomain state in [26] was supposed to be
the easy-axial one instead of the onion state.

5. 2D example: linear magnetization dynamics for a cone shell

In this section we illustrate our approach for curved shells, considering a cone shell with high
easy-surface anisotropy. Recently we found out the ground magnetization states of the side
surface of a right circular truncated cone [11]. In the current study we solve the dynamical
problem of spin waves on the background of the ground state.

Let us consider the cone surface, where the radius of the truncation face is R and the
length of the cone generatrix is L. Varying the generatrix inclination angle ψ π∈ [0, 2], one
can continuously proceed from the planar ring (ψ = 0) to the cylinder surface (ψ π= 2) (for
notations see inset (a) in figure 3). The cone surface can be parameterized as follows,

Figure 3. The lowest frequencies of linear excitations over the easy-surface ground
states of the cone, depending on the relative generatrix length L R and inclination angle
ψ. Inset (a) shows geometry and notations.
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ξ ψ ξ ξ ψ+ = + =( ) ( )x y Ri cos exp i , z sin , (41)2 1 2

with the curvilinear coordinates ξ ∈ S1
1 and ξ ∈ L[0, ]2 . The parametrization (41) generates

the following geometrical properties: the metric tensor∥ ∥ =αβg gdiag( ; 1), the modified spin
connection Ω ψ= e gcos1 , and Γ ψ ϕ= −e gsin cos1 , where ξ ψ= +g R cos2

[11]. As above, we use here the angular parametrization (3) for the magnetization.
We limit ourselves by the case of the strong easy-surface anisotropy. In accordance to

(28), the magnetization polar angle θ π≈ 2. Similar to the 1D case, the azimuthal magne-
tization angle ϕ satisfies the pendulum equation [11] (see (30)),

ϕ ψ ϕ ϕ∂ + =ξ ξ sin sin cos 0. (42)2
1 1

The ground state of such a cone is the onion state ϕon for ψ ψ< ≈ 0.8741c and the axial one
ϕax for ψ ψ> c [11]:

ϕ ξ
ξ
π

ϕ π= = = ±( ) x k x kam( , ),
2

K( ), 2, (43)on
1

1 ax

where the modulus k of the Jacobi’s amplitude is determined by the condition
π ψ=k k2 K( ) sin (see (32)). The magnetization dynamics follows the Landau–Lifshitz

equation (4). In the case of a high easy-surface anisotropy λ ≫ ℓ2 2, one can derive the
dynamical equation for the in-surface magnetization angle ϕ:

  Ω Γ Γϕ
λω

ϕ
ϕ

∂
= − − ∂

∂ℓ4
· ( ) · . (44)tt

0
2 2

For the cone surface (41) the dynamic equation (44) takes the form

λω
ϕ ϕ ϕ ψ ϕ ψ ϕ∂ = ∂ + ∂ + ∂ +ξ ξ ξ ξ ξ

g

ℓ
g g

4
cos

1

2
sin sin 2 . (45)tt

0
2 2

2
1 1 2 2 2

Now after linearizing this equation on the background of the onion state ϕ ξ( )on
1 , we can

present the small deviation φ ϕ ϕ= − on in the following form:

φ ξ ξ ρ= ω( )t x a, , e P( )X( ), (46 )t
1 2

i

where ρ ψ= + ξ1 cos
R
2 , and x is defined in (43). By separating variables one can find that the

angular part xX( ) satisfies the Lamé equation [23]

Λ″ + − =k x k bX 2 sn ( , ) X 0, (46 )2 2⎡⎣ ⎤⎦
where x ksn ( , ) is a Jacobi elliptic function [23]. The periodic solution of (46b), which
corresponds to the lowest eigenvalue Λ = k2 [23], coincides (up to the constant) with the
following Lamé function =x x kX( ) Ec ( , )1

0 2 . Then the function ρP( ) appears as the solution
q q ρ ρ ρ= +P( ) J ( ) N ( )1 0 2 0 of a zero-order Bessel equation, where q Ω ψ= cos , with

Ω ω ω= c and ω ω λ= ℓ R2c 0 . Using the boundary conditions

ρ′ = ′ = cP (0) P ( ) 0, (46 )0

where ρ ψ= +1 cosL

R0 , one can determine the eigenvalues from the following equation
q q q qρ ρ=J ( )N ( ) J ( )N ( )1 1 0 1 0 1 , whose numerical solution is plotted in figure 3 for the case

ψ ψ< c.
Similar to (40), there is the zero (Goldstone) mode for the magnon oscillations on the

onion background. The eigenstate for the zero mode reads:
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φ ξ Λ Ω= = = =( ) X x x k k( ) dn ( , ), , 0. (47)G
1

G G 2 G

Let us analyse now the spin waves on the background of the axial state ϕ π= ± 2ax .
Similar to (46) one can find that

ϕ ξ ξ π ρ μ≈ ± + ∈ω μξ+ ( )t, ,
2

e P( ), , (48)t
1 2

i i 1

where the radial function q q ρ ρ ρ= +ν νP( ) J ( ) N ( )1 2 , with ν ψ μ ψ= +sin cos2 2 . The
boundary conditions (46c) lead to the equation q q q qρ ρ′ ′ = ′ ′ν ν ν νJ ( )N ( ) J ( )N ( )0 0 , which
determines the eigenfrequencies. Its numerical solutions for the lowest mode μ = 0 are
plotted in figure 3 for the case ψ ψ> c. As well as in the previous case, the lowest frequency
becomes arbitrarily small, with the cone size increasing. Nevertheless, it is not so for the
cylinder surface, where the lowest frequency is fixed and is equal to ωc. The case of cylinder
(ψ π= 2) should be considered separately, starting from equation (45), whose linear solution
against the axial state has the form qϕ π= ± + ω μξ ξ+ + ∥2 e ti( )1 2 , with q∥ being the wave vector

along the cylinder axis. The corresponding dispersion relation reads qΩ μ= + + ∥R1 2 2 2 .
Existence of a gap in the spectrum of the cylindrical magnetic shell was already predicted
theoretically [27] and checked by numerical simulations [28].

6. Summary

To conclude, we develop the general approach to describe the magnetization states in arbi-
trary curved magnetic wires and shells in the vanishing thickness limit. The curvature induces
effective magnetic anisotropy and an effective Dzyaloshinskii-like interaction. We obtain an
equation of magnetization dynamics and propose a general static solution for the limit case of
strong anisotropy. In the latter case the curvature effect is reduced to an influence of effective
curvature-induced magnetic fields. We illustrate our approach by two examples: (i) we cal-
culate possible ground states of ring wires and compute the magnon spectrum in this system,
and (ii) we study the magnon spectrum in the cone shell. In both cases the curvature is the
source of different possible ground states. The curvature contribution to the magnon spectrum
of these systems is mostly due to the curvature-induced anisotropy.

Appendix Exchange interaction of the curved wire: another representation

In this appendix we discuss another angular parametrization for the magnetization:

Θ Θ Φ Θ Φ= + +m e e ecos sin cos sin sin , (A.1)1 2 3

where Θ Θ= s( ) and Φ Φ= s( ) are the angles in the Frenet–Serret frame of reference: the
polar angle Θ describes the deviation of magnetization from the tangential curve direction,
while the azimuthal angle Φ corresponds to the deviation from the normal. Similar to (12),
one can rewrite the energy terms as follows:

 Θ Θ Φ
κ Θ ϕ τ Θ κ Φ
Φ Θ τ Θ κ Θ Φ κΘ Φ

ℰ = +
ℰ = − +
ℰ = ′ − + ′

( ) sin ( ) ,

( cos sin sin ) cos

2 sin ( sin cos sin ) 2 cos . (A.2)

A

D

ex
0 2 2 2

ex
2 2 2

ex
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Finally, the exchange energy takes the form (see (13))

Θ κ Φ Θ Φ τ κ Θ Φℰ = ′+ + ′+ −( ) ( )cos sin cos sin . (A.3)ex
2 2⎡⎣ ⎤⎦
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