International Conference

PROBLEMS OF THEORETICAL PHYSICS

dedicated to the 100th anniversary of Alexander Davydov

October 8-11, 2012

Program & Proceedings

Kyiv 2012
Deterministic and chaotic vortex dynamics in magnetic nanodots

O. V. Pylypovskyi¹, D. D. Sheka¹, V. P. Kravchuk², Y. Gaididei², F. G. Mertens³

¹ Taras Shevchenko National University of Kiev, 01601 Kiev, Ukraine
E-mail: engraver@univ.net.ua
² Institute for Theoretical Physics, 03143 Kiev, Ukraine
³ Physics Institute, University of Bayreuth, 95440 Bayreuth, Germany

One of the effective ways of the magnetic vortex core reversal in a nanodisk can be realized under the action of ac magnetic field. Recently, the resonance switching of the vortex polarity under the action of ac perpendicular field was found numerically [1,2]: when the field frequencies are tuned to the eigenfrequencies of radial spin-wave modes, the threshold field amplitudes required for vortex-core switching are an order of magnitude smaller than those of static perpendicular fields. In this work we study such a switching in details both numerically and analytically. Different switching regimes are found when changing the field intensity H_0 and its frequency f. In particular, the vortex polarity demonstrates a chaotical dynamics with $1/f$ spectrum in a wide range of H_0 and f. We analyze the chaotic behavior of the system by means of autocorrelation functions, phase trajectories and Poincaré maps. We predict also a deterministic oscillations with resonance at the $f_0/3$ frequency which leads to polarity switching. We study the controlled vortex polarity switching under the influence of a short wave train: the controlled unidirectional switching takes place for low field amplitudes.

We present an analytical approach to describe simulations data using the vortex core model [3]. Our model is in a very good agreement with results of numerical simulations.