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Dynamics of Vortices and Their Contribution to the Response Functions 
of Classical Quasi-Two-Dimensional Easy-Plane Antiferromagnet 
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The mechanism of magnetic vortex motion in the classical easy-plane antiferromagnet and the 
vortex gas contribution to the response functions of such magnets are considered for temperatures 
above the K08teritz-Thouless transition. Unlike a ferromagnet, gyrotropical properties of such vor­
tices arise only in sufficiently strong transversal magnetic field. Because of that, the magnetic field 
produces an important effect on the shape and the width of the central peak of the dynamical 
structure factor of antiferromagnets. 

PACS numbers: 75.10.-b, 75.50.Ee 

Nonlinear elementary excitations of quasi-two-dimen­
sional (2D) spin systems such as magnetic vortices bring 
about specific solitonical contributions to all the thermo­
dynamical characteristics of a magnet [1]. There is a gas 
of quasifree magnetic vortices in the isotropic easy-plane 
magnet above the critical temperature Te. These soli­
tons make some contribution to the response functions 
of the magnet and shape the so-called central peak (CP) 
of the dynamical structure factor (DSF). Such a contri­
bution was calculated in Refs. [2-5] for the vortices in a 
ferromagnet, in Ref. [6] for in-plane vortices in an anti­
ferromagnet (AFM), and in Ref. [7] for in-plane and out­
of-plane vortices in the AFM with very weak anisotropy 
and asymmetric Dzyal08hinskU interaction (DI). On the 
other hand, comparison with simulations (see Refs. [6, 
71) proves that dynamics of out-of-plane vortices in the 
AFM differs strongly from those mentioned above; they 
must have an effect on rms velocity of vortices and con­
sequently on the vortex contribution in the OSF. 

In this paper we have considered the dynamics of the 
out-of-plane vortex and their ensembles in the AFM with 
weak easy-plane anisotropy, asymmetric 01, and the ex­
ternal magnetic field, which is perpendicular to the easy­
plane, calculated vortex average velocities and their con­
tribution to the DSF. It was proved that the presence of 
a magnetic field H by contrast to the DI considerably 
changes vortex dynamics which substantially transforms 
the shape and the position of the CPo Besides that we 
showed that the value of rms velocity is greater than in 
the ferromagnet [8] for the same values of parameters 
of magnets and depends critically on the magnetic field. 
Strong dependence on temperature of vortex gas rms ve­
locity is predicted for slight fields or absence of field. 

The model.-Let us consider the two-sublattice model 
of the AFM. Instead of magnetic moments of sublattices 
MI and M2, IMII = IM21 = M o, it is convenient to 
introduce the normalized magnetization vector m and 
the normalized sublattice magnetization vector 1, 

m = (MI + M 2)/2Mo , 1 = (MI - M2)/2Mo , 

which are related by 

m 2 + 12 = 1 (m, I) = o. (1) 

Supposing Iml « III ~ 1 (this assumption is justifi­
able in a weak magnetic field H « He and a weak DI, 
Hd « He, where He and Hd are exchange and 01 fields, 
respectively), let us write down the energy density of the 
AFM[9) 

W = M~{ %m2 + i(VI)2 + ~l~ 

+ d (ez . [m x I]) - 2h . m} . (2) 

Here the unit vector e z is directed along the hard 
axis of the crystal, Mo is the saturation magnetization, 
o = He/2Mo and 0: are the constants of the uniform 
and nonuniform exchange, respectively, {3 > 0 is the 
anisotropy constant, h = H/Mo, and d = 2Hd/MO is 
a constant of the DI. 

To investigate the nonlinear dynamics in the AFM let 
us switch over to the e1fective equation for I only on the 
basis of the generalized (J' model of n field for the sublat­
tice magnetization unit vector 1; see Refs. [10,11] (the 
equivalent description through the angular variables for 
MI and M2 was proposed by Mikeska [12] and used in 
Refs. [5-7]). It is convenient to use angular variables 
for 1, lz = cos 9, Ix +illl = sin9exp(itp). Neglecting the 
dissipation processes, the equations of motion can be ob­
tained from the Lagrangian, 

L = o:a~~ f d2x { :2 (:r -(V9)2 - l~ cos28 

+ sin28 [c~ ( (Zr -29HZ) -(Vtp)2] }. 

(3) 

The magnetization vector m can be expressed in terms 
of 1 and 81/at only: 

d 2 2 [81 ] m = 6" [1 x ez) + 6" {h - I(h . In + goMo 8t xl. 

(4) 
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Here c = gMo.,fai/2 is the minimum phase velocity of 
spin waves, 9 is the gyromagnetic ratio, a is the lattice 
constant, lH = 10 (1 + H2 / H~) -1/2 is the characteristic 
l!lagnetic length, lQ = (a/p)I/2, Ho = He(6/P)I/2/4, and 
/3 = /3(1+d2/6/32)1/2 is the effective anisotropy constant, 
renormalized by the DI; see [13,14]. 

Note that in the framework of the model (2) the DI 
was exhibited in the statical characteristics only, namely, 
in the formula for m and in the renormalization of the 
anisotropy constant /3. But in fact the additional term 
eij1cDu1il,811c/at can occur in the Lagrangian (3) for the 
arbitrary type of the DI [13]; see also Ref. [14]. If Dij = 
deij1c(ez)1c the term reduces to the total derivative and 
can be omitted. 

It should be noted that at H = 0 and Dij = 
deij1c(ez)1c the dynamics of the AFM magnetization is 
Lorentz invariant (LI) with the characteristic velocity 
c, but when H I: 0 we have the gyrotropical term 
ex gH sin2 ()(8cp/at), breaking down LI properties [in the 
ferromagnet we have an opposite situation in which the 
dynamical term of the Lagrangian ex (1 - cos ()(8cpat) 
is of a gyrotropical nature only, but terms with (8()/at)2 
and (8cp/at)2 are absent]. 

In the dissipationless limit, the system has such inte­
grals of motion as magnet energy E and momentum of 
magnetization field P. The expression for the momentum 
maybe obtained from the Lagrangian (3): P = PLI+Pg , 

PLI = - aa;~ J d2x [V(): + VCP~ Sin2 ()] , 

aaM.2 J P g = T d2xsin2()gHVcp, (5) 

where the term PLI is a customary 11 one, and the gy­
rotropical term P 9 is caused by the presence of the mag­
netic field. This expression has no singularities connected 
with the undifferentiability of cp when r -+ 0 and () -+ 0 
or 11' (the problem of the undifferentiability of cp was dis­
cussed by Papanicolaou and Tomaras for the vortices of 
a ferromagnet; see Ref. [15]). 

It is of interest to note that in the case of a station­
ary nonuniform state of the AFM such as () = 11'/2, 
cp = k· r, the presence of the term P 9 leads to the 
nonzero momentum P = kgHaaM~S/c2, where S is 
the AFM area. Such behavior is typical for a super­
fluid liquid, which is described by a complex order pa­
rameter 'II' = ''1/1' exp(icp). The momentum density of the 
superfluid flow is determined by the well-known expres­
sion p = ''I/I,2Vcp = P.V., where P. is the density of the 
superftuid component and v. is its velocity. The similar­
ity of these expressions makes it possible to talk about 
a fundamental analogy between superfluid systems and 
easy-plane magnets (this problem was discussed for the 
case of ferromagnets; see Refs. [16,17]). The momentum 
density can be naturally juxtaposed with the quantity 
PaVs, while the energy density corresponds to the quan­
tity Pa v~ /2. It follows from the above formulas that the 

quantity ~FM = 2aaM~(gH/c2)2 = 8aH2/c26 can be 
treated as the analog of the superfluid density P. for the 
dynamics of the easy-plane AFM. 

Vortex dynamics.-The structure of the vortex is de­
termined by equations for () and cp following from (3). 
For the motionless vortex the solution has the form 

Cp=CPo+vX, ()=()(~), ~=r/lH' 

both in the ferromagnet and in the AFM, where CPo = 
const, X and r are the polar coordinates in the magnet 
plane xy, and v = ±1, ±2, ... determines the vortex topo­
logical charge (vorticity). The function ()(e) is a solution 
of the ordinary differential equation 

~() 1 d() (V2) 
~2 + e ~ = sin()cos() 1 - ~2 ' 

with boundary conditions ()(O) = 11'(1- p)/2 and ()(oo) = 
11'/2, where p = ±1 determines the second topological 
charge of the vortex (polarization) [17]. The energy of 
the static vortex diverges as the logarithm of the area S 
of the vortex, and when lv' = 1 it is determined by the 
expression Eo = !1I'aaM~ In(5.67S/lt-); see Ref. [9]. 

The basic distinctions of vortex dynamics in the AFM 
from the case of the ferromagnet are explained by the 
study of its dynamical properties. It was mentioned 
above that the Lagrangian (3) has the LI property when 
H = 0, and the distribution for the vector 1 of the 
vortex moving with the velocity v = vez can be ob­
tained from the static solution by the Lorentz transform, 
x -+ x' = (x - vt){l - v2/c2)-1/2, y -+ y. The energy 
and momentum of the vortex when H = 0 are deter­
mined by the 11 formulas, ELI(V) = Eo(l - v2 /c2)-1/2, 
PLI(V) = (v/c2)ELI(v) , where Eo is the energy of the 
motionless soliton. Thus, the vortex effective mass in 
the case where H = 0 is proportional to InS. 

In the presence of the magnetic field, the examination 
of the vortex motion is more complex. In particular, 
there is no exact solution describing the moving vortex 
in the ferromagnet. Unlike this case, we were able to 
construct the exact solution for the vortex in the AFM 
moving with constant velocity v < c and H f:. 0, 

cp = CPo + arctan (!,) + k· r, k = vgH/c2 , 

() = ()(~'), ~'= r' (lil- k2)1/2, rl2 = X,2 +y2. (6) 

It is easy to express the vector m in the terms of an­
gular coordinates, 

m z + im1l = - sin() (i~ + 2: COS()) ei'P 

+ -- l- + sm () cos ()- e''P 
2 (.8(). 8CP) . 

g6Mo at at' 

m z = sm () - - ---• 2 (2h 2 8CP) 
6 g6Mo at . (7) 
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The term with k is caused by the vortex "freezing 
into the condensate." The effect of "freezing into" ex­
ists both in ferromagnets and AFMs (when H :f:. 0), and 
it makes possible the vortex motion only with hydrody­
namical fluxes. Therefore we can omit the inertial term 
in the equation of motion. The energy of such a soli­
ton E(v) = ELI(V) + JJ,V2/2, where JJ = p~FMS is the 
condensate mass. 

To investigate the dynamical properties of the AFM 
vortex ensemble, we use an approach [lSJ based on an 
analysis of the expression for the magnet momentum P 
and force balance conditions dP / dt = F, where F is the 
external force acting on the vortex. For a steadily moving 
soliton 0 = O(r - q(t» and tp = tp(r - q(t» , where q(t) 
describes the motion of the vortex center. In accordance 
with (5), the momentum contains the two terms PLI and 
P g. As in the case of the ferromagnet, P 9 contains the 
term p~O) , which is finite when v --+ o. The value 

dP~O) _ aaMGgH Jd2 . 20 (" 80 "08tp) -- - x SID v tp- - v -• ~ m m 
can be transformed to dP~O) / dt = -G [v x ezJ, where 

G = -21rvaaMJgH/c2 . (8) 

When writing down the force balance condition as 
G [v x ezJ + F = 0, the term with G may be interpreted 
as some gyrotropical force acting on the moving vortex. 
Such gyroforce is always present in the case of the fer­
romagnet and determines the most important properties 
of the dynamics of vortices and their ensembles, in par­
ticular, the value of rIDS Uj see Ref. [SJ and below in 
the text. The gyroforce in the AFM is nonzero only at 
H :f:. 0, and for the same values of the parameters Mo 
and v, it is less than that in the ferromagnet [absolute 
value GAFM ~ (SH/He)GFM' the order of the magni­
tude of He is 100-1000 kOeJ. Let us point out that it is 
only in the case of the AFM that G does not depend on 
the second topological charge p. 

On the basis of the previously obtained relations, let 
us write down the effective equation of motion for the 
ensemble of vortices, 

[ 8q,] 8q, 
G 8t x ez + Fe" - TI m = 0 . (9) 

Here qi is the ith vortex-center coordinate and G is the 
above-determined gyrotropical constant. The meaning 
of the remaining terms is the same as in the ferromag­
net: Fe,i = -Vi'Hint describes the interaction between 
vortices, Hamiltonian 'Hint = -2 ~i"'j eiej In Iqi - Qj I is 
typical for 2D Coulomb interaction, "electrical charge" 
ei = ViMo./1raa, and TI is a viscous coefficientj cf. [19J. 

Vortex gas average velocity.-Equation (9) was used by 
Huber [SJ in the thermodynamical calculation of vortex 
gas velocity in the ferromagnet. The features of vortex 
gas motion are of substantial interest in the calculation 
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of solitonic response functions. Investigations of the case 
of the ferromagnet by Mertens et al. [2J showed that 
vortices produce an essential contribution to the CP re­
gion. Thermodynamical characteristics of vortex gas in 
the AFM exhibit salient features connected with the van­
ishing of GasH --+ o. 

Let us introduce the self-consistent effective "elec­
tric field" E, describing interaction with other vortices. 
There is a formal similarity between the equation of vor­
tex motion and the equation of motion of guiding cen­
ter in a 2D plasma, which lies in a perpendicular mag­
netic field [SJ. It allows us to estimate the value of 
(E2) by results obtained by Taylor and McNamara [20J. 
(E2) = nv1re2ln A, where n" is the equilibrium vortex 
density, and A determines the proximity to the ther­
mal equilibrium. For the cases of a random and a ther­
mal distribution A is expressed by AR = S/,rra2 and by 
AT = 41r2Te/nve2a2, respectively. 

Using this (E2) and Eq. (9) we obtain the value of the 
rIDS vortex velocity 

U - - _ v 0 ° InA e(E2) 1/2 c (1rn l2 H.2 ) 1/2 

- (G2 +Tl2)1/2 - 2 H2 + H~ , 
(10) 

where for convenience we use the typical fields Ho (see 
above) and Hr = TI(g8/S1ra)j Hr is proportional to the 
relaxation coefficient. Estimating TI as in Ref. [19J, we 
obtain Hr ~ 0.05Ho when T ~ Te. Thus, for the value 
UlUH ~ He /4H is seen to be inversely proportional to H, 
but for H « Hr, U/UH does not depend on H. Rather, 
U/UH ~ He/4Hr, where 

UH = g~O(ap)1/2 (1rnvl~lnA)1/2 
is a typical rIDS velocity in the ferromagnet obtained by 
Huber [SJ. Therefore the rms velocity in the AFM is 
greater than that in the ferromagnet. These results agree 
in kind with data simulated by Volkel et al. [6]. It would 
be interesting to check the dependence U ex: l/H, but 
numerical simulations for H :f:. 0 have not been carried 
out, as far as we know. In the case where H < Hr 
the value U does not depend on H, but it is inversely 
proportional to relaxation constant TI. Since TI ex: 1'"', 
n = 2 for the ferromagnet [19] and n = 3 for the AFM 
[21], this formula describes a decrease of the value of U 
with increasing T stronger than in the ferromagnet. Note 
that the computer simulations demonstrate a decrease 
of U for the AFM [7J in a small vicinity of Te when T 
increases stronger than for the ferromagnet [6]. 

DSF calculation.-Now we proceed to the calculation 
of the vortex contribution to the correlation functions. 
Because of (1) contributions of terms m and 1 are inde­
pendent and additive. Moreover, they give correlations 
at two different positions in q space. Namely, 1 deter­
mines components of the CP, which are centered about 
the AFM Bragg peak, Le., at the position KO = (1r, 1r) ; 
cf. Ref. [6J. But m makes a contribution at q = o. 
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The concrete calculation can be made in analogy with 
the case of the ferromagnet [2), so we are not going to 
detail it here. Lei us note that the CP for the out-of­
plane correlations has a Gaussian shape, and for in-plane 
ones it has a (squared) Lorentzian shape. Both for in­
plane and for out-of-plane correlations, the CP widths 
~r Z = ql1 and ~r:r: ~ 1.1411n!/2 increase strongly as the 
field diminishes; see Eq. (10). 

It is important to note that the magnetic field and the 
DI affect different components of the OSF and can be 
checked independently. The form of the in-plane com­
ponents is not a function of the magnetic field. It is 
determined by such expressions as in [6) and [7), which 
take into account the OI. For the out-of-plane correla­
tions the 01 makes no contribution, but the form of the 
OSF components depends substantially on the value of 
the magnetic field: 

SZZ(q,w) = 1!t(q)12 FG(Ko - q,w) 

4h2 4h2 
+ 62 nv6(q)6(w) + 62 Ih(q)12FG(q,w). 

Here FG (q, w) determines the well-known (2) expression 
for the the Gaussian CP, 

FG = 211'~ql1exP [-(wlql1)2] , 

fle(q) = J<Pxcosk 8(r) exp(iq . r), k = 1,2, are two dif­
ferent vortex form factors, which determine distributions 
of I and m, respectively. Let us note that the intensity 
of the third term IX H2. The analysis of this dependence 
can be a good test for comparison of experimental and 
theoretical data. 

Thus our investigation demonstrates that vortex dy­
namics in the AFM differs substantially from that in 
the ferromagnet and besides the magnetic field, which 
is perpendicular to the easy plane, strongly affects it. 
The vortex dynamics is described by the LI equations 
when H = O. In the presence of the field, effects of 
vortex "freezing into the condensate" and of gyrotrop­
ical motion appear. There is a transfer from the vis­
cous motion to the gyrotropical one when H increases. 
For all reasonable fields H « He, which do not destroy 
the AFM order, the rms velocity ii and the CP widths 
~r IX 11 are greater than Huber value: ii IX (He I H)UH 
for H » Hr and ii IX (HeIHr)uH for H « Hr, where 
Hr ~ O.05Ho « Ho «He. Moreover, the presence of 

field gives rise to the particular contribution to the out­
of-plane OSF components whose intensities are substan­
tially dependent on the field. 

The authors are indebted to V. G. Bar'yaktar, A. R. 
Bishop, A. K. Kolezhuk, F. G. Mertens, A. R. Volkel, 
and G. M. Wysin for stimulating discussions. 
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