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We use the generalizegtmodel to analytically study the solution of the problem of magnon
scattering in two-dimensional isotropic ferromagnets and antiferromagnets in the

presence of a Belavin—Polyakov soliton. We obtain the exact analytical solution to this problem
for the partial mode with the azimuthal quantum numiver 1. The scattering amplitude

for other values of (i.e., values not equal to unijtare studied analytically in the long- and short-
wavelength approximations and also numerically for an arbitrary value of the wave number.

We establish the general laws governing the soliton—magnon interaction. For a magnetic material
of finite dimensions we calculate the frequencies of the magnon modes. We also use the

data on local modes to derive the equations of motion of the soliton. Finally, we calculate the low-
temperaturélong-wavelength asymptotic behavior of the magnon density of states due to

the soliton—magnon interaction. @999 American Institute of Physid§1063-776(99)02309-4

1. INTRODUCTION magnetic materials were obtained by Mertensl® and in
the research that followe@ee the review articles in Refs. 3

It is now firmly established that solitons play an impor- and 7. In research devoted to 2D solitons, the density of
tant role in low-dimensional magnetism, i.e., in one-solitons(vortices was taken as an external parameter of the
dimensional1D) and two-dimensional2D) magnetic mate- theory. This approach was also used in analyzing the data of
rials. Studies began with the simpler 1D case. Krumhansihe experiments in which the contribution of localized 2D
and Schrieffef found that solitongkinks) must be consid- solitons to the relaxation of spin excitations was
ered on an equal basis with magnons as elementary excitabserved~'* The main difficulty in analyzing 2D systems
tions in the derivation of the thermodynamics of 1D mag-lies in the absence of exact analytical solutions for most
netic materials. Currieetal? construct a consistent models. Usually the solitons are treated numerically by di-
phenomenological theory of solitons, in which a nontrivial agonalizing with respect to small discrete systéms® In
fact was established, namely, that the kink—magnon interacsuch finite geometry the soliton—magnon interaction mani-
tion substantially alters the magnon density of states, whiclfiests itself primarily in the existence of specific Goldstone
has an effect on the thermodynamic properties of the systeniocal modes with anomalously low frequencies and in the
In particular, the temperature dependence of the soliton derexcitation of magnon modes by soliton motion. Thanks to
sity is determined by the shift in the magnon phase in kink—the reverse effect, it was possible to describe the dynamical
magnon scattering and can vary substantially for magnetiparameters of a soliton by the data on local modes.
materials with different kink—magnon interactiot’s. In this connection, an important role is played by the

A special role in soliton phenomenology is assigned toanalysis of such 2D models for which analytical results can
local magnon modes, which are spin waves localized at &e obtained and the general laws governing the soliton—
magnetic soliton. For instance, the number of such modemagnon interaction can be established. Only one exact ana-
determines the total variation of the magnon density of statelytical solution of this type is known, the Belavin—Polyakov
and hence the temperature dependence of the kink dénsityBP) soliton, which describes a topological soliton in an iso-
More than that, local modes are interesting objects by themtropic 2D magnetic materidf The existence of local modes
selves, and their study is linked to direct experiments in exin such a system was predicted in Ref. 21 for an isotropic 2D
citing and detecting them, since by characterizing the intrinferromagnet and in Ref. 22 for an antiferromagnet. In par-
sic latent degrees of freedom of the soliton the local modes$icular, it was found that a BP soliton with a topological
are the cause of soliton magnetic resonance at the characteharger has 2v| local modes of zero frequendiocal zero-
istic frequencies of “intrinsic” motior?, frequency modes

Important results in the soliton thermodynamics of 2D In the present paper we construct a solution of the prob-
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lem of scattering of magnons by a BP soliton in 2D magneticscribes a ferrimagnet near the point at which the mechanical
materials. In Sec. 2 we examine the generalizechodel,  moments of the sublattices are balanced. For such a magnetic
which can be used to describe ferromagnets and antiferranaterial the gyroscopic term has the same structure as in a
magnets, as well as ferrimagnets near the point of comperierromagnet but is proportional to the small paramet@r (
sation of the sublattice spins. In Sec. 3 we formulate the-S,)/(S;+S,), whereS; andS, are the average mechani-
scattering problem for this model and obtain its exact solucal moments of the sublattic52®

tion for the partial mode with azimuthal quantum number  The simplest elementary linear excitations of a 2D iso-
m=1. Sections 4 and 5 are devoted to calculations of théropic magnetic material that arise against the background of
scattering amplitude for the other valuesnofn+# 1) analyti-  the ground homogeneous state are the magnons belonging to
cally in the long-wavelength approximati&(R<1 (Sec. 4  the continuous spectrum. If we select the orientation of the
and numerically for arbitrary values &R (Sec. 3, wherek order-parameter vectar along the polar axis, we get mag-

is the wave number arid is the radius of the soliton core. In non solutions in the form of a circularly polarized wage

the sections that follow we use the results to describe the=cons&l, ®=kr —w(k)t. The dispersion law for a ferro-
various physical properties of solitons and local magnormagnet is quadratiapgy (k) =DKk?. For an antiferromagnet
modes. Section 6 deals with calculations of the frequency ofhe dispersion law is lineatwaey(K)|=ck, and there are

the magnon modes for a magnetic material of finite dimeniwo degenerate branches with opposite circular polarizations,
sions. In the same section, using the data on local modes, we= *+ ck, which is equivalent to the possibility of linear po-
derive the equations of soliton motion. In Sec. 7 we calculatdarization of magnons.

the magnon density of states for which the soliton—magnon The simplest static nonlinear excitations in the 2D case
interaction is responsible. In the Conclusion we discuss thare the BP soliton%

different ways in which the theory could develop and the

possible applications. b\, r
tan?:X | |, ¢O:@O+ VX, Xzﬁ, (2)

2. THE MODEL. ELEMENTARY EXCITATIONS which, naturally, has the same form for a ferromagnet, an

A broad class of classical isotropic Heisenberg 2D magantiferromagnet, and a ferrimagnet. Hereand y are the
netic materials can be described dynamically in terms of th@olar coordinates in the plane of the magnetic material, the
classical unit vectom of the order parameter, i.en, integervis the topological charge of the soliton, aRdand
=cosf andn,+in,=sinfdexpfi¢}. The dynamics of a clas- ¢o are arbitrary parameters. o
sical ferromagnet is described by the Landau—-Lifshitz equa-  The energy of such a soliton is given by the formula
tion for the normalized magnetizatidh which acts as the
dynamic variablen. In a classical antiferromagnet, the dy- Eo=47A[v| )
namic variable is the antiferromagnetism vector, which in the o o .
long-wavelength approximation can be assumed to be a un@"d iS independent & and¢g,. The ambiguity in the choice

vector. The dynamics of an antiferromagnet is described b)(? o is @ charact_eristic feature of many models and a con-
the equations of the-model of then-field 2425 sequence of the isotropy of the Heisenberg exchange. The

In the interests of generality we examine two types 0fexistence of an arbitrary paramefithe soliton radiusand

magnetic materials within a unified approach, more prein€ fact that the energy is independentoére related tolgge

cisely, on the basis of a generalizedmodel, whose La- scale invariance of the static two-dimensionaimode
grang’ian in the 2D case can be writ&n ' Obviously, this symmetry is broken in dynamics, with the

exception of the trivial case of a pure antiferromagnet and
L_éJ ) {i(a—a>2—(va)2+sin2 0[i<@>2 translational motion, when everything reduces to Lorentz
) c?\ gt c?\ ot transformations.
In analyzing the static solutions it is convenient to intro-
—(Vq&)z}— E(l—cosa) ﬁ] (1) duce the complex-valued order parameter (n,+in,)/(1
D at —n,) and interpret it as a function of the complex variable
whereA=JS%, whereJ is the exchange integral argiis the l=re'X _describir_lg the position of a point in_the plane of the_
atomic spin. The specific type of magnetic material is deterMagnetic material. In terms of these variables, the static
mined by the relationship between the parameteamdD. ~ €duations of the o-model reduce to the self-duality
To describe a ferromagnet we must drop the second timgquatior® ow/d{=0 or sw/3;=0. The BP soliton corre-
derivatives in the equations of motion, i.e., formallydego ~ Sponds to the simplest solution of this equation of the form
to infinity. The dynamic term in the Lagrangian of the ferro- _
magnet is of a purely gyroscopic nature, with the parameter wy=A¢" for v>0, wp=A{"" for »<O. 4
D having the meaning of the spin stiffness of the ferromag-
net. The dynamics of an isotopiemodel describing an an- There are also more general solutions to this equation of the
tiferromagnet has a Lorentz-invariant form with a characterform =f(¢) orw=1f(¢), wheref is any analytic function of
istic speed parametar. For an antiferromagnet there is no the complex variabl€. In particular, the static multisoliton
gyroscopic termthe coefficientD can be taken to infinily ~ solution with the topological charge depends on [2/]
Note that the generalized-model for finiteD andc de- parameters and can be written
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(constructing the same general solution for 0 is a trivial xcoseoj—ﬁ + R_ ‘9_'“ _ R_ I _ 7)

— =0,

task. The energy associated with this solution is determined c® gt> D ot

by (3) and is independent of the parametérsay, andby.  \here v2=(1/x)d/ax(xd/dx) is the radial part of the

We associate the soliton center with the valre 7, this Laplace operator andJ,(x)=(v/x)2cos %, and U,(x)

solution has(for different a, and by) » solitons with unit = ot 6,V26,— (d6/dX)? are the “potentials.’i®1° Using the
. .

topological_charges at the poins=ay. If all a, coincide, oy yjicit form (2) for the static solution, we can easily show
then atb,=0 the solution(5) coincides with(4) and de- 5 the “potentials” in both equations are the same. This
scribes one soliton with the topological charg@t point{  ¢at is ynique for the isotropie-model. For instance, for
=a. Thus, variations in the parameteag and by has a \qrices in a magnetic material with easy-magnetization
strong effect on the structure of the soliton but do not changﬂanesw,lg the potentials differ substantially. The very fact
its energy or topological charge. This means that a BP SOIIfhat the potentials are different not only complicates the

ton has extremely high internal degeneracy, which reflectg,ysis technicallyin comparison to the ordinary Schro
the property of conformal invariance of the static tWo- ginger equation but also introduces serious problems. In

; ; 20,29 ; ;
d|men3|onala-m0del._ Hence a BP soliton con5|s_ts_ of a particular, for systems of the foriv) with unequal poten-
set of local modes with a zero frequency. The explicit form; o U, andU, many general assertions of the type of the

of these zero-frequency modes can be obtained by varyingggjation theorem have yet to be formulated. In Ref. 18 it
(5) in the parameteray andby. In the limit a,b,—0, the 35 shown that equations of this form may have truly local-
soliton can be represented by the expansion ized states with an exponential decrease of the wave function

” and energies inside the continuous spectrum, which is for-
0= W—Wo _ A_nT for A0, (63 bidden for equations of the Séhﬁog_er form.
Wo m=—v+1 ¢ In the degenerate case considered here the magnon

modes can be described by a single complex-valued param-

or, introducing the deviationg and ¢ from the quantitiesly  eterw =9+iu, which obeys the second equation
and ¢, into the simplest equatio(®), by the formula

, 1 #? P 2v ov
SinOA _Vx+?(9_)(2+FC03260 ‘I’—I700300E
6— 6o-+i Sinfo( p— o) = — ———. (6b)
(Om R?*% R? gV
e o o ®

This implies that there are|2| independent types of small o .
perturbations that do not alter the soliton energy. Their formivhose analysis is almost the same as that of the Satger
is determined by the functiofec(7)  Meexplimy}. This is equation. It is convenient to seek.the solution of E8).in
equivalent to the statement thau® local modes with a zero  th€ form of a partial-wave expansion:

frequency are associated with a BP solitsee below. *
v= > fhexpimy—iot}. 9)
m=—o©
3. MAGNON MODES IN THE PRESENCE OF A SOLITON Hert()aI each partial wavg, is an eigenfunction of the spectral
problem
To describe the magnon excitations that arise against the . )
background of a BP soliton, it is convenient to introduce Hfm=2"fm,  %=kR, (10

local coordinatese; ,e,,e;} characterizing the distribution
of the order parameter in a fixed solitogy coincides with
the order parameten, of the immobile soliton(2), e;
=@, COSt—86Sin¢y, ande,=e; X e;. Then the linear oscil- m?+ 2mv coséy+ v2 cos 24,
lations of the order parameter can be described in terms of Um(x)= X2 '

the projections oh on the local axes; ande,: 9=n-e, and i i i
w=n-e, (¢ and u/sing, are the small deviations frorf, The spectrum of the problerfi0) is continuous and is de-

for the 2D radial Schidinger operatord=—V2+U (x)
with the potential

and ¢, respectively. scribed by functions of the forrfy;,, with x=0. Clearly, the
The linearized equations fa¥ and x can be represented Z€ro-frequency modef, correspond to solutiofis
in the form of the system of equations fsr?)zx—msina(). (11)

2

, 14 2v These modes correspond to perturbations of the f@m
_VX+P(9_X2+U1(X) 19‘?‘7

i.e., their presence is due to the conformal invariance of the
b 5 problem. Here and below, for the sake of definiteness, we
p  RE°9 R du examine the case where>0, and to analyze solitons with
Xcosbp—+ — —5 + = —=0, o ! X
dxy c° ot D ot v<0 it is enough to replacen by —m. This solution be-
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haves regularly as—0 only for partial modes with— .

<msv. A simple analysis of Eq(11) shows that for—» fﬁ:;zATgﬁ- (14)
+1<m< the function f{?), regular asr—0, also de-

creases far from the soliton. Hence ferv+1<m=< v these The transformation we haVe just Carried out SlmpllerS
functions are finite over the entire range rof This corre-  the problem for the translational moden{ 1) substantially.
sponds to the earlier conclusion that a BP soliton with dndeed, in this case/;(x) =»?/x* for all values ofx, i.e.,g}
topo|ogica| Charg@ has aV| local modes represented Gﬁ) determines the free motion. In view of this, the regular solu-
Note that the physical meaning of two of these modes idion has the formg7=—J,(xx). Restoring the initial func-

obvious: the translational modé?) , describes the displace- tion by (14), we get

ment of the soliton as a whole, and the rovibrational mode 2v  J(kr)
£(9) | describes the rotation and change of the soliton radius ~ f{=J,,1(Kr)— +— — =2 (15)
: S . kr (r/IR)?"+1
(which corresponds to an ambiguity in the choice of the po-
sition of the soliton center and to arbitrary values¢gfand The existence of this exact solution for all values of the

R, respectively. The established bound statéscal modey  wave vectork is a unique property of the modél). For
are limits for the magnon modes of the continuous spectrunather values ofn (as earlier, for the case of magnon scatter-
as x—0, on contrast to the case of 1D magnetic materialsng by magnetic vortices in ferromagn%"[s and
(see the review in Ref.)3 antiferromagnet§ with planes of easy magnetizatiprthe

Using the standard method of varying the arbitrary conroblem can be solved only approximately or by numerical
stant, we can find the second linearly independent solution ohethods.

Eq. (10) with »=0: The solution(15) demonstrates an important feature of
2 9 2 magnon modes, which is absent in the cases discussed in
fD=xm + 2 sin G, (12  Refs. 18 and 19, where the exponential decrease of the de-
m+v m m-—v viation of magnetization from the easy-magnetization plane
which is regular at zero whem> . in a vortex far from the vortex center is a characteristic fea-

Thus, ato=0 one of the solutiong11) or (12), for all ture. Equ_ation(15) shows. that the d_eviat!on dfy from t.he
m has no singularities at zero. We use this solution to ana@Symptotic termJ, ., (kr) is not localized in a region with a

lyze scattering at smalbut finite) values ofw in the range of definite radius; instead it is characterized by a slower
smallr. (power-law decrease. More than that, for the most interest-

The exact solutionsﬁ,?) that have been found can be INg cases of Igng—wavelength asymptotic behavior, Kor
used to simplify the problem of the analysis of the continu-<1/R the solution(15) over a broad range of valuesafor
ous spectrum on the basis of the Darboux transformafion. R<r <1k, has the same form as a COle'”a“O” of Bessel
The same approach has been used in Refs. 31 to study the #9d +l\1eu_mann functions, J,,,(2) 2" and N,
case. To explain the method, we introduce the Hermitian<? ("1, i.e., the second term ifL5) imitates the presence

conjugate lowering and raising operators of th(_a funct_ion N. (Below we will see that this property
remains valid for all values am.)
. d o Lo d o1 £(0 For magnetic vortices, the corresponding corrections are
A=—ax T TOr A= x™ TOr exponentially decreasing functions of the form gxp'r,},

wherer, is the radius of the vortex core. In view of this, the
such thaTAfﬁ]?):O (here and in what follows a prime stands scattering amplitude, i.e., the coefficient of the Neumann
for a derivative with respect t®). By introducing these op- function, can be determined from the coefficient af"lin

erators we can represent the Sd]"ger operatoﬁ in the the I’egion wherg<1. This is not true, hOWeVer, in our case,
factorized formA=A'A. What is important is that this with the result that the method developed in Ref. 19 for

makes it possible to reformulate the initial problét©) in magnetic vortices and used to analyze the scattering matrix

. .  Aex by analyzing the corrections to the zero-frequency modes in
terms of the eigenfunctiorgy,= Afr, of the spectral problem the regionr,<r<1/k needs to be thoroughly modifidf

of the form we wish to use it in our problem. This modification is done
Q=2  H=BAT=—VZ+/, (13  In Sec. 4. ,
o On the other hand, the terms with a power-law decrease
where the potential is of the form 1f2, a>1/2, must be taken into account when
’ (m—1)2+ »2+ 2(m—1)cosb, we de_scribe_ t_he p_roper_ties of magnon_m_odes in a magnetic
Zn(X) = 5 . material of finite size with a soliton. This is done in Sec. 6.

X

Note that far from the solitottas 6,— 0) the potential?/,,
becomes the centrifugal potential of the formy+Hm
—1)?/r?, which depends explicitly on the azimuthal number  To describe the scattering of magnons by a BP soliton,
labeledm— 1, which explains the terminology used for the we note that free magnon states can be found if wevset
operatorsA andA. =0 in the “potential” U ,,(x). The resulting magnon modes

The initial functionf ,, is restored by applying the raising f{ ,_,=Jn(2), with z=kr, are the partial cylinder waves of
operator: a plane spin wave of the form

4. SCATTERING IN THE LONG-WAVELENGTH LIMIT
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explik-r—iotl= >, i™(z)explimy—iwt}. (16)

In the presence of a soliton the behavior of the magnon

Ivanov et al. 587

between 0 and 1 and dependrmiy the addition to the zeroth
solution (%) is small and perturbation-theory techniques can

be used.
The same laws stand for the magnon mode iti

solutions can be analyzed at large distances from the solitorf 1 scattered by a vortex in a magnetic material with easy-

(r>R). In view of the asymptotic behavidy ,(x) ~n?/x?,
in the leading approximation in X/we have the usual
resulf!

ngCGm(Z)EJw(Z)+0':1’1N|n‘(z), n=v+m—1,

meCFm(Z)E\]‘m(Z)'FO'rVnN‘p|(Z), p=v+m

17

(below we also use the notation involving and p, and
Gn(2) andF,(2) for the combination of cylinder functions
of the specific form presented {d7) with allowance foro).
A comparison of the asymptotic behaviors Gf,(z) and
Fm(z) with each other and with the solutidii6) for free
magnons suggests thaf,=o,(») determines the soliton—
magnon scattering amplitude. Since the coefficientse the
same forF,, and G,,, to calculate the scattering amplitude

om(x) we can use the initial problem or the modified prob-

magnetization planesS. Since the deviations from the
asymptotic solution were found to be exponentially small,
both solutions are valid foR<r<1/k, the asymptotic solu-
tion (18b) and of the form(17). This made it possible to find
the coefficient of the Neumann functiow, (kr) (with al-
lowance for the fact thal,(kr)=(kr) =" wherekr<1)
and to write an analytical formula far|, =1 (k). In our case,
however, the situation is more complicated. As noted in Sec.
3 in the discussion concerning the exact soluti@b), the
asymptotic solutions far from the soliton contains corrections
that decrease by a power law. Although they do decrease
faster than the asymptotic solutioh8b), it is very important
to account for them. In particular, they may have the same
form as the Neumann function far<1.

Thus, to calculate the scattering amplitude we must com-
pare the approximate solutigd8b) not with the asymptotic

lem. In particular, there is no scattering for the translationaform (17) but with the refined solution that allows for terms
mode. Unfortunately, there is no way in which we can findincreasing by a power law far from the soliton. Fo# 1 the
analytical solutions for the other modes, but the scatteringorrections can be expressed by exact formulas, but they can

can be analyzed fairly thoroughly in the limiting cases.

easily be calculated in the long-wavelength approximation

To analyze soliton—magnon scattering in the case ok<1/R, where we can assume thaR<z=Kkr<1.

smallk, we can use the fact that k=0 we know the exact
solutionsf%: (12) for m=v and(12) for m>v. In this case,
we can construct the solution for small but finké&k<1/R)
by using a perturbation-theory expansionki To this end
we seek the solution in the forifif,= fﬁ](1+ x*a(x)), where
x?a(x)<1. The functiona(x) is determined by an inhomo-

To do this, we introduce the variakte= kr = xx into Eq.
(13). Then the combinationR/r)" in 6y(r) becomesx”/z”
and vanishes for finite as x—0. Hence in the limitx
=kR—0 Eg. (13) simply becomes a Bessel equation with
the solution(17), and the corrections can be found by a se-
ries expansion in powers ofx(z)”. Keeping only the first

geneous second-order linear equation, whose solution can m@nvanishing approximation in<” and representing the
found by the method of variation of the arbitrary constant ifasymptotic solution in the forngg(z)=Gn(2)+ <7 (2),
the two linearly independent solutions of the homogeneougve arrive at the inhomogeneous Bessel equation

problem are known. For a magnetic material with easy-
magnetization planes this can be done only for the transla-
tional mode'® In the case of an isotropic magnetic material

n?\  4v(l-m) (x|
1=z|=—%2—\3) Cm

Vig+

the solutions can be found by this method for arbitrary valye see that to this accuracy the solution far from the soliton

ues ofm (see Refs. 32 and 22

In deriving a specific solution it is convenient to employ
the modified problem by using the first-order equation

wherefy, is the zeroth solution, bounded as hich can be found by solving an equation of the form

ATg% — %ZfO
m m?
x—0. Whenm<= v, the functionf(?) is such a solution, from
which we easily find that

%2

ggzwqﬂ)(x),

OO (x)= fox(fg’)(g))%dg, for m=v. (183

The same formulas can be used to readily restore the

explicit form of the solutionf};, of the initial problem:

X g )
f2(x)=f9(x) 1—J fg(—%dg . (18b)

0
0 'm

Analysis of this solution has shown that in a broad interval ofanswer is¥’

r values, G<r<RS(1/k)!S (the values of parametes are

can be expressed in terms of the universal functigq,(2),

Im(2)=Cm(2) +4v(m=1)x>" %y ,(2), (19

n?\ Gm
1- ? .‘//‘|n",,= - 2—2(m5
Using the standard method of variation of an arbitrary con-
stant, we can write the solution of this equation in integral
form:

2
Vz*§|n|,u+(

) ™ * Gm(z)‘]\n|(z)
Il (2)=5 Npn| , —2ern 4z
T » Gm(Z)Njp(2)
- EJ‘nl , wdz (20)
Here integration can be carried out exactly, anthét v the
= gS,O)/szzz".
But if |n|# v, we have the recurrence relation
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Z;in\,vz ff,,_lA‘nLV'i‘ B|n|’V, 27 (v—n)

=y (24)
2v—1 g+ (v—n)gl® > visin(mn/)
Anl,v= 2v(n?—12)" Bin|,,= 4p(n2— 1222 where the contribution of the constadit, is crucial when
. . n>0 but is a small correction whem<0.
which yields Integration in(18a with the use 0f23) and(24) leads to

v v—1 v an expression fog;,:
Dnlp="21 kﬂz Alnjkt IZZ Bin| k i:];[+1 Alnl,it Bjnj,»- 5
g (X))o ®x"— —x" ", (25
Limiting ourselves to corrections to the Bessel function, i.e., n

taking G =Jj in (20), we arrive (after involved calcula-  Here we have ignored terms of the foxi2” in comparison
tions that use the properties of cylinder functipas an ex- g x—2Inl

pression forsy Let us compare the asymptotic solution we have just
7 In(2 [1 In(z/2)- ¥(|n|+1) found with t.he solutipr(22) of thg scattering problem. Using
Ginja(2)=— An+1) 2 nn+1) the expansion of cylinder functions for small valuezand
comparing the resulting asymptotic expressions, we conclude
Inj-1(2) 1 that the ternx!" in (25) is related to the Bessel functidy, ,
4z(n*—1)  4[n[(n?—1) while the termx““‘ is relateql to the l\_leumann_ functiow,
and determines the scattering amplitugleA simple com-
- k(|n| +2K) Iy + 2 parison leads to an asymptotic expression for the scattering
XIZl N CE amplitudeo:
Ny (2) 10— T2 (f)znl
+W|z_l), (21) Tl n[t(n]—2)1 2] (26)
where y(x) is the Euler psi function. with —2v+1<m<1 andm# — v+ 1. Note that allowance

Thus, as with the exact solutiofl5), the asymptotic for the correctionss |, ,, leads to a contribution to of order
behavior of the solution for>R differs from that in mag- %??, which is insignificant in the given range of parameters.

netic materials with easy-magnetization planes discussed ear- 2+ The casén|>v is realized form<-2y+1 andm
lier. Even ifo=0, i.e., there is no scattering, in the region far > 1. Intégration in(18a with the use of the same approxi-

from the solution but with finite (R<r<1/k), the solution ~Mations(23) and(24) leads to the asymptotic solution

contains a number of terms that formally divergezasO v+ n|

(kr<1). In this case, forr#0, in the regionR<r<1/k of g7 (x) x| 1+ —xz”), 27)
interest to us, the solution of the scattering problem can be vn

written in which only the leading corrections inxXLare retained.

The asymptotic expressid@?) is valid form= v, when
the zeroth solutions?, are described by the functioh§’ . A
Here we did not include the corresponding corrections to thgimilar calculation can be done fon> v, where for the ze-
Neumann function, since we can easily show that they conroth functions we uséfﬂl);
tain higher orders ok and are unimportant.

By comparing the approximate solutiqt8) valid for
0<x<<1/x with the solution(22) valid for 1<x<1/x we can
now find the scattering amplitude,,(x). In analyzing this )
problem it is convenient to examine the different ranges of (1) vy — (0) (1)
variation of the parameters separately. * fo fm'(§)Tm (£)€d¢ for m>». 9

1. The casdn|<v incorporates both local modes with
their numberan taken from the interval-v+1<m<1 (0
<n<wv) and nonlocal modes for which 2v+1<m<-—w»
+1 (—v<n<0). Infinding the asymptotic solutiofi8a of

9(2) %) (2) +4v(m=1)%*" )y (2)+ 0N (2). (22
1
g,?:)d—(a;(l—%zd)(”(x»,

Calculating the integral ii28), we arrive at the asymptotic
expression27) for v>1. For v=1 the asymptotic solution
for modes withm>1 is

the equation we realize that far from the soliton the zero- 1 52
x m -
frequency modes have the form gm(X)oex™ 1+ 2 mim+ D) Inx|. (29
O~ n2+1 ( 1— %) i (23) Thus, the asymptotic solutiorig7) and(29) obtained for
X X In|> v differ dramatically from the earlier solutiof25): the

Hence we arrive at an approximation wo)(x) in the im- solutions (27) and (29) do not contain terms of the form
portant regiorx>1: 1/xI" and hence cannot yield an asymptotic expression of the

form J;,+ o N, . This is possible only if in the solutiof22)
O 2oan, A oo, the correction? |, , is balanced by the scattering teen,,.
P (x)=d X N+ ——x , .. . LS
n v+n Note that this is an extremely stringent condition: not only
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must the terms ¥/" be balanced but also all terms of the (Ref. 18, while for ferromagnets,(k) ando” (k) can be
form x2¢/xI" where G<k=|n|—1. Allowing for the term in  obtained from each other by changing the sign of the mag-
n|,» related toN, [see(21)], we get non frequencyRef. 19

In conclusion of this section, we give the general solu-
tion of the problem of the scattering of a plane spin wave by
a BP soliton. It is convenient to formulate the solution in

terms of the variablel =¥ explivy}, which becomes r{,
+iny)exp{—iwt} asr—o and describes a spin wave propa-

B . 7N, - _
4y(m—1)x =1 kllAk—i—aNn 0,

which yields a formula for the scattering amplitude:

5\ 2 gating against the background of the homogeneous state with
om(x)=.72 r"n(§> , —2v+1l<m<l, m#-—-v+1, n|le,. The need to pass froff to ¥ can be explained by the
fact that although far from the soliton the magnetization is
w2 (2v— 1) homogeneous;||e,, the unit vectors; ande, depend ory.
A= (300 with allowance for(9) and(17), the asymptotic solution for

T (v=1)! +1)...(m+2v—1)" ;
(v=D!m|(m+1)...(m+2v-1) r>R can be written

3. The special casds|=v» and|n|=0 where the solu- "
tions (30) and (26) become invalid include the translational T= C(J(KE) + o IN-(KP) Y explin v — i ot
mode (m=1), the local mode witm= — v+ 1, and the non- mzz—oo m(In(kN)+om(Nn(kr)) expliny —iwt),
local mode withm= —2»+ 1. For the translational mode the (33

exact solution(15) yields o=0. A calculation done on the _ . .
. . . wheren=v+m, and theC,, are arbitrary constants. Using
basis 0f(188 and a comparison of the results with the solu- . . . : :
asymptotic expressions for the cylinder functions in the re-

:Ic?rt]h(:ii)lcl);\t\r/]i?l;;Z{;?T:Et%t?éoeb;ggsliﬁjdn? ft:re other two CaseSgion r>1/k and selectin@C,, on the basis of a comparison of

(33) with the asymptotic expressidi6) for free motion, we
can write the general solution of the problem of scattering of

T %)= le/%) m=-v+1, (31)  aplane spin wave:
v 4 % 2 1 qf: ik-rt+.7¢ M —ijwt ,
om(%)= m(z) In—, m=-2v+1. (32 expik-ri+.7(x) 7 exp—iwt}

The above analysis of scattering in the long-wavelength exp —im/4} - .
limit makes it possible to calculate the scattering amplitude ~ (X)= Wm;w (exp{2i 5} —1)
in the long-wavelength approximation, i.e., ferk1/R. At
this point in our discussion, several general remarks concern- xexpli(v+m)yx}. (34
ing the nature of soliton—magnon scattering are in order.
It was found that ask—O0 the scattering amplitude
om(Kk) tends to zero for all values @h andv. In most cases
the amplituder,(x) given by Eqs(30) and(26) is a regular
function of ». In contrast to(30) and (26), for parameter
values specified by31) and (32) there exists a derivative o o0
dPo/dxP that has a singularity. The order ig=1 for Q:f | 712dx= > ©m.
m= — v+ 1, with the scattering being at its maximum. Such 0 m= -

nonanglytlc behav!or oir(k) was dete_cted in the numer_|ca| where theg = (4/k)sir? &, are the partial scattering cross
analysis of scattering of magnons with=0 by a vortex in sections

an antiferromagnet with an easy-mag_neti_zation _pl_ane done in As noted earlier, for smak, the maximum scattering is
Ref. 18(see also Ref. 32 The scat.terlng.|nten3|tyr.1 €ON"  related to the local mode witm=— v+ 1, for which, ac-
trast to .the case of mggnetlc vortlcgs dlscusseg in Refs. 1 ording to(31), the scattering phase= /2 In x. Hence, in
and 19 is not at_'ti maximum for partial waves with smallest the leading approximation ikt is enough to limit oneself to
values ofm (m=+1,0). the contribution of this mode, with the result that we arrive at

. .The. very fact that for a partial wave with a givemthe _an expression for the scattering function of the form
limit point k=0 serves as the local zero-frequency mode is

not critical for the scattering intensity. In particular, the 7 exg{i(x+ w4}
mode withm=1 (the well-known translational mode&oes Tx)~ K ImkR
not undergo scattering.

We also note that for the case of scattering by a BRn this approximation the scattering is isotropicA(x)| is
soliton there are no simple relationships that link the scatterindependent ofy). The corrections to this expression are of
ing intensities fom= + |m| andm= —|m|. For scattering of order 1/kR)?**%2 and are important only for determining
magnons by a vortex in magnetic materials with easythe anisotropy of7 ().
magnetization planes, such relationships were established by The total scattering cross sectigwhich has an inte-
numerical analysis: for antiferromagnets, (k)= o’ (k) grable singularityin the limit x—0 is given by the formula

In (34) we have introduced the scattering phad(x),
which is related to the scattering amplitude by the simple
formula o= —tané.

The total scattering cross section is given by the formula

k<1/R. (35)
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2 Oml?

v

5. ANALYSIS OF SCATTERING DATA FOR MODERATE
VALUES OF k

The scattering can also be treated analytically in the
short-wavelength limitk>|m|/R. It is natural to assume that

in this case the problem can be analyzed in the quasiclassical 2 /3 /
approximation, which yields -0.5 //
. [P x /
Om>* \ ——cogconst- | p(§)dé|, -1.0
X X0
(37) FIG. 1. Plots ofs,, vs. kR for v=1, labeled with the corresponding values

of m. The dashed straight lines drawn through the va|de$= /2 desig-
nate the positions of the poles of the scattering amplitude.

PA(X) = #2— Wn(X) + !
“Om m.

Indeed, analysis shows th@7) is valid for all values ofz

=kr larger than the coordinate of the turning poimat,

= xXq, Which corresponds to the conditign(xy) =0. The

value ofxg is small,xg~|m|/x<1. amplitude has a pole. Naturally, there is no real divergence at
On the other hand, at small distanaesR (x<1) the this pole: the physically observed scattering phéevaries

“potential” 7/, has the asymptotic form7Z,~(v—m  monotonically. The existence of a pole means that the total

+1)%/x?, i.e., it describes free magnons of the fof@®)  increment of the scattering phasig) — 5(0), isfinite. Ac-

with a mixed index: cording to numerical calculations for a soliton with a topo-

logical chargev=1, this increment is equal te@ (to within

sign), i.e., each mode is associated with a single pole. Such a

For k>|m|/R, there is a broad range of valuesrof|m|/k  singularity manifests itself in the analysis of the number of
<r<R, in which we can limit ourselves to the asymptotic magnon degrees of freedofsee Sec. 7

gmocJ|V*m+l|(Z)1 fmocJ‘mel(Z) fOI’ r<R.

expression for the Bessel function in the linzit=1 andz To analyze the intermediate valueB~ 1, we solved the
>[m|: scattering problem numerically. The calculations were done
2 1 by numerical integration of the spectral equations for the
Im*Jy-me 1= \/; COS(Z—§|v—m+ 1] initial problem [Eq. (10)] and the modified problenpEqg.
(13)] within a broad range of values &R and m: 103
7 4(v—m+1)2-1 <kR<10® and — 20=m= 20 (the results of each calculation
2 + T) . (38 agree with what was said earlieBasically we are interested

in case withv=1, where the soliton energy is at its mini-

To within terms of order ¥, the solutions(37) and  mum. However, some data were obtained#er2, 3, and 4,
(38) coincide in the entire range of parameter overlap.ioo.

Hence, doing the asymptotic expansion(87) far from the Numerical calculations verified the long- and short-
soliton, we arrive at the short-wavelength asymptotic expreswavelength asymptotic expressions for the scattering ampli-
sion for the scattering amplitude: tude given above. In the intermediate region of wave-vector
#(m-1) 1 values,k~1/R, there are poles in the scattering amplitudes
(%)=~ Sn(a20) % x>|m|. (399 atk=k+p for all the modes in questio(Fig. 1 depicts the

data for the modes with different values ofin the case of
Most importantly, this formula reproduces a property ofa soliton withv=1).

the exact solutior{15) according to whicho;,,=0 holds at Let us discuss the problem of the position of the poles in

m=1. More than that, the scattering amplitude asymptotithe scattering amplitude in greater detail. According to the

cally tends to zero as #/for all m#1, with the o being  numerical data at=1, for allm+ 1 there is only one pole at

equal in absolute value but having opposite signs for magnok=k,. Here k, increases withm|, and the functions,

modes withm=|m| and m=—|m|+2. Below we will see =k,(m) are different form= +|m| and form=—|m| (the
that this result plays an important role in the analysis ofreader will recall we are dealing with solitons with|=1).
density of magnon states in a 2D magnetic material. For very large values din| the pole goes to infinityFig. 2).

Now we can compare the scattering amplitudes in théThe situation becomes more complicated whenl. More
long- and short-wavelength limits. Clearly;—0 in both  precisely, preliminary numerical data show that for a given
cases, but the signs of(x) for x—0 andx—o are oppo- m there can be several poles, with their numbgr not ex-
site. This situation is characteristic of magnon scattering by @eedingv.
1D soliton in the sine-Gordon ang* models and of the For comparative analysis of the scattering of modes with
Landau—Lifshitz equatioiisee the review article in Ref).3 different values ofn, we write explicitly the asymptotic ex-

It can be assumed that for a certain firkte k,, the scattering pression for the scattering phasevat 1:
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kR av(r,x)
p 1
351 J =0, (42)
r or r=L
o a -
301 o a
L a
°© a
251 o a
°°AAA which model the case of free boundary conditions. There is
201 OOAA no difficulty in extending these results to the case of general
15t o8 boundary conditions, but we do not do this here. The mag-
» o‘:A non spectrum in such a system is discrete. In the absence of
10F o*:A solitons, the characteristic wave numbé&s; are equal to
| Oa imilL, wherej,; is theith zero of the Bessel functiah, or
5r Oa ' o Lo .
oa the derivative of this function for the ca$él) or (42), re-
O ? i N 1 n i L H
0 5 10 15 20 Iml spectively.

In a magnetic material with a BP soliton, whdnis
FIG. 2. The positions of the polés as a function of the mode numberat large, we can ignore the local part of the function and write
v=1.The correspond tan=0 and theo to m=0. Jn(kL)+ o (k)N (kL) =0. It is natural, then, to expect the
same behavior from, i.e.,k=j/L, wherej lies between the
values of the corresponding root of the Bessel or Neumann

2 functions or the derivatives of these functions.

X
wsgnm( 1- —Zm(m+1) , %<l m#—1,0, However, for —v<m=<v, i.e., in the case of zero-
S(x)=~ frequency modes, the symmetry of the problem is Higtale
m(1—m) . . .
—_ x>|m|. invariance is restorgdHence we should expect the occur-
V.

(40) rence of Goldstone modes. In an unlimitédfinite) mag-
netic material, the frequencies of the Goldstone modes are
Assuming that these equations are valid at least qualitativelyero, while in the presence of a boundary these modes mani-
and settingx~1, we can make a rough estimate of the po-fest themselves as modes with very low frequencies, i.e.,
sition of the pole by equating the values &fx) for x<1 ) <1 | particular, such modes arise for a vortex in a fer-

and for »>1. This yieldsk,~|m|/R for [m[>1. Such an romagnet with an easy-magnetization plane in the case
estimate reproduces fairly accurately the linear increa&g in _ : . .
where|m|= 1, which corresponds to translational motion of

as a function ofm| for large values ofml (see Fig. 2 the vortex. For this modek~r, /L2<1/L, wherer, is the

radius of the vortex core. Since in this case the solution is

approximated by17) with an exponential accuracy even for
6. MAGNON MODES IN A MAGNETIC MATERIAL OF FINITE r>r,, the existence of Goldstone modes is determined
SIZE solely by the scattering matrix.

The foregoing analysis of the scattering problem in the ~ When we are dealing with a BP soliton, in the analysis
long-wavelength limit can be used to study the natural magof Goldstone modes it is not enough to limit oneself to a
non modes in a magnetic material of a finite surface aregolution in the form(17) corresponding to the scattering
containing a soliton. Such a problem plays an important rol@oroblem—one must also allow for the local part of the solu-
in many applications. Firstly, its solution can be used to detion. The corresponding calculations are so tedious that in
scribe analytically the data obtained through computer simustudying Goldstone modes it is more convenient to deal with
lations of soliton motion, which are always done for systemshe long-wavelength asymptotic expressions derived earlier;
of finite dimensions. In particular, in Refs. 33 and 19, thisthe expressions are valid for< 1/k, i.e., forkr<kL<1. Itis
approach was used to describe the dynamics of a vortex in s region that is so important in the analysis of such modes.
ferromagnet with an easy-magnetization plane and to verifiote that no Goldstone modes are present in the modified
the non-Newtonian equations of motion containing third de'problem (the long-wavelength asymptotic expressidrsa

rivatives of the vortex coordinates with respect to time. SeChas no small parameter, with the result that the boundary
ondly, as noted earlier, this calculation can be used direc“%onditiong"zo leads oniy to the solutiok~1/L)
m .

to describe the natural modes for the small particles of the In analyzing the Goldstone modes it is convenient to

magnetic material, which are in what is called the vortex o . .
9 return to the initial problem for the functidif,. In this range

state® o .
We begin with the simplest case of the magnon modes ir?f values ofk, it is only natural to use the approximate

a circular system with a finite radius and a soliton at the €xPression(18b) for fr,. The analysis done using this ex-

center. We discuss both the Dirichlet boundary conditions Pression shows that Goldstone modes occur only in the re-
gion where local modes exist. In the case of the Dirichlet
W(r,x)|=L=0, (41)

boundary conditions, the spectrum of the Goldstone modes,
which correspond to a fixed value of magnetization at thewhich can be found from the conditioi,(kL) =0, has the
boundary, and the Neumann boundary conditions form
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1+n sin(an/v)(R\" this solution in the regionk|<1/L, where the exponential
2v T T(E) , —vtlsmsy, increase of the function(z)*expz for z>1 does not
KL= manifest itself.
/ m=—p+1. For ferromagnets and antiferromagnets these results lead
In(L/R)’ to significantly different physical pictures of soliton dynam-

(43 ics, which means that cases must be analyzed separately.
The situation is somewhat more complicated for free In the case of an antiferromagnet, there are two frequen-

boundary conditions. In particular, with Neumann boundaryCIeS corresponding to the translational Goldstone mode:

conditions, the solutiorf18b) does not allow for states with 4v(v+1)c?(R\%
kL<1. In this case, however, we can derive a solution by wO:iT(E
using a cylinder function of imaginary argument, which
yields w=Dk?<0 for the case of a ferromagnet @*<0 Clearly, this frequency has meaning only for fixed boundary
for an antiferromagnet. Below we discuss the physical meaneonditions, and negative? mean that the system is unstable.
ing of negative values ob and w?. At the same time, for a ferromagnet the vale= Dk?<0

The following roots of the equation already agree withdoes not contradict the condition for stability. These results
the conditionkL~1. They correspond tk?>>0 for all types  can easily be explained on the basis of a simple physical
of boundary conditions. Since fér~ 1/L andR<L the ratio  picture of soliton motion.
r/Ris large at the boundary, the valuelgfL is close to the Obviously, for an antiferromagnet, which is described by
value of the corresponding zero of the Bessel functign, Lorentz-invariant equations, the dynamics of all excitations
=j,+1p, Whered, 1(j,) =0, or to the value of the zero of must also be Lorentz-invariant. When the soliton is slew,
the derivative,j,, whereJ, . (j,)=0 in the case of fixed <c, this means that in the leading approximation the soliton

(46)

and free boundary conditions, respectively: coordinateX (for X the origin is at the center of the system
20 3. [R|2” in the case of an antiferromagnet satisfies an equation of the
KL=j,+ — V_JP(_> , (449  Newtonian type:
P P kL ‘]1//+1(Jp) L
9?X
. 2v (RIL? (2v+1 M~z =Fe. (479
KoL=Jp+ KC7.1G0 | kL J(jp)—3(jp) |- (44D

whereF, is the external force acting on the soliton, avid
Thus, the spectrum of the natural frequencies of a smal=E,/c? is the effective soliton mass, witE, the soliton

particle of a magnetic material in an inhomogeneous statenergy[see Eq.(3)]. Assuming that when the deviation of

contains anomalously low frequencies, which manifest themthe soliton from the equilibrium position at the center of the

selves in the magnetic resonance of samples containing sugfystem is small we can write

particles, say, ferroliquids and granular magnetic materials.

Usov and Peschaffound that the magnetization distribu- :ﬂ (47

tion in a particle in the vortex state is well approximated by ¢ LP

the BP soliton. Although our calculations can be applledIet us compare the value of the frequency obtained4s)

only to particles shaped as a thin disk, it is easy to generallz\clavith the value of w?=—a/MLP. We find that p=2(v
them to the case of a cylinder.

Now we go back to the discussion of the meaning of th +1), and a==16mv*(v+1)AR for the Dirichlet and
9 9 “Neumann boundary conditions, respectively. This corre-

2 i
resultk<0 for a Goldstone mode for free boundary condi sponds to the simple picture according to whiEhis the

tions. We examine the most interesting case; 1, corre- force of the image acting on the soliton because of the pres-

sponding to the translational motion of a BP solitdelow : . . :
. ence of a boundary. Since magnetic vortices interact as 2D
we will show that the parameters of a Goldstone mode can

: . . . charges and a BP soliton witt=1 is a vortex dipole, soli-

be directly related to the equations of motion of the sojiton : : : :
) . tons with giveny>1 can be interpreted asv2nultipoles,
The parameters of what is known as the translational Gold-", . ) :
which explains the presence pfin (47b) and the sign ofx.

stone mode can be obtained directly from the exact solution Thus, the properties of the translational Goldstone mode

(15). ForkR<1 the solution is in an antiferromagnet can easily be understood from the fol-

i1 4dv(v+1) 1 lowing reasoning. When a soliton is deflected from its equi-
Wx)eer™H 1 k02 (rIRZ+1)’ librium positionX =0, it is driven by the force of the image.
S ) N For the Dirichlet boundary conditions the force is a restoring
which implies that for fixed boundary conditions, one (repulsion from the boundarand the motion is stable.
4v(v+1) (R\?" If the soliton is attracted to the boundafthe Neumann
kzzT(E) (45 boundary conditions Eq. (47) describes the departure of the

soliton from the unstable position of equilibrium Xt 0.
For free boundary conditions the solution has the same form  Allowance for the next values &, ; for i>0 can also
but k? is negative. Negativé? is not inconsistent with the be explained on the basis of effective equationsXoHere
presence of Bessel functions of imaginary argumiemdi-  the hierarchy of the effective equations of motion containing
fied Bessel functionsin the solution, since we are studying only even-order time derivatives manifests itself. The coef-
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ficients of the higher-order derivatives diverge las»c. verges as —. The divergence oM is probably a general
Mertenset al3® proposed equations of this type for describ- property of 2D magnetic materials with a gapless dispersion
ing the behavior of interplanar vortices in a ferromagnet. law.

The situation is quite different for a ferromagnet. The = We also note that the finite value of the soliton mass
equation that is commonly used to describe the soliton dyM«1/K, where K is the anisotropy constant, obtained in

namics is Ref. 37 for a magnetic material with an easy-magnetization,
22X X axis does not contradict the above dependévieel? for an
M —5 +G| e,x— | =F,. (48)  isotropic ferromagnet. Indeed, in a magnetic material with an
ot ot easy-magnetization axis, the gap in the magnon spectrum is

HereF, is the external force, which, obviously, is the samefinité and a characteristic linear scalg= \/m appears,
as in the case of an antiferromagfste Eq(47b], andG is frorr21 WhICh. we can obtain the same result as in Ref.Nd7,
the gyroscopic term, whose value is determined only by th& 20> 1K, if L is replaced byA, in (52).
topology and has been reliably establisfé#®3¢ G
=47vA/D. The data on the effective mass of 2D solitons
and vortices are contradictory: in Ref. 37 it is stated that in a
ferromagnet with an easy-magnetization plane the value of- PENSITY OF MAGNON STATES OF A 2D ISOTROPIC
M is finite but diverges as the anisotropy constariends to MAGNETIC MATERIAL IN THE PRESENCE OF A SOLITON
zero,M=1/K. In Ref. 38 the result for a vertex M« 1/L, in
Ref. 33 the masM is proportional to IrL, and in Ref. 1M
is finite, but only if the termG;(e,x 9°X/dt3) is present in
the effective equations of the forfd8). In Refs. 36 and 39,
the dynamics of a BP soliton is described on the basis of th
Hamiltonian formalism with noncanonical Poisson brackets
and the relationship between momentum and velocity an
the values of the mass are not discussed.

According to (45), the frequency of the translational

A 2D magnetic material can be described thermody-
namically with allowance for soliton excitations via a gener-
alization of soliton phenomenology developed by Krumhansi
and Schrieffef and Currieet al? for 1D systems to the two-
Gimensional case. According to their approach, at low tem-
geratures the state of a 1D magnetic material can be de-
Scribed in terms of almost free excitations, magnons and
kinks. The main effect of their interactions manifests itself in
the form of an asymptotic shift of the phase of a magnon
Goldstone mode for a ferromagnet has the form scattered by a kink. This causes the total number of magnon

4y(v+1)D [R\?” states from the continuous spectrum to chatigecompari-
iT E) ) (49) son to the case of a magnetic material without a solitpn
. ) ) L . N AN=fli°kOp(k)dk, where p(k)=(1/27)ds(k)/dk is the
with the "plus” and “minus” corresponding to the Dirichlet density of states. This quantity is a negative integer, i.e., the

and Neumann boundary conditions, respectively. In the . .
. : . : . humber of magnon states in the presence of a soliton de-

present case there is no instability, since EB) with M C : . .

i . . i creases byAN, which is obvious, since a fraction of the

=0 (i.e., only the gyroscopic term is taken into accqunt . .
. A L magnon states are now described as the collective modes of
describes small oscillations of the soliton in the case of at: . . L .
. . . the kink dynamics. The variation of the density of magnon
traction to the boundary and in the case of repulsion from the - .
. States due to the addition of a kink to the system causes a
boundary. Allowance for the next translation mode, whose . . .
. ) change in the thermodynamic characteristics of the magnon

frequency is determined by the formula X :

gas, in particular, the free energy of the magnons. In the
w,=D(j/L)? or w;=—D(j'/L)? (500  phenomenological approach, this change in the free energy

) . i of magnons is interpreted as a change in the kink energy due
in the case of the Dirichlet or Neumann boundary conditions, kink—magnon interaction.

respectively, makes it possible to draw a conclusion about

the inertial_terms in the equation of moion. ) magnetic material the total number of states is proportional
Assuming thaiwy<w,, these roots can easily be com- L,L,. A free magnon corresponds to the expangib®

pared with the tvx_/o frgquenues that arise in thep solqtlon oﬁn the cylinder harmonics,,(kr)explimy} in which the an-

Eg. (48). Indeed, |n.th|s case we hawg~ —a/GLP, which gular variable has already been quantized, so that only the

ylelds exactly the first value of the frequency of the transla-,iq) part](kr) needs to be quantized. In a circular geom-

tional Goldstone mode. For the second value we gelyy with radiusl, the simplest quantization conditiddd)

w1~ —G/M. This value can be compared (80) if we put 55 the formJ,(kL)=0, from which it follows thatk,L

47 vA ( L\2 47 vA L)Z =jmn- In the region of interest to us>1, the zeros of the

wo=

Let us use all these ideas in the 2D case. Clearly, in a 2D

Dz |7 OFM=-—]z 7 (51)  Bessel functionsj,, ,, are approximately equal ten. From

this fact we can formally determine the admissible values of
respectively, for fixed or free boundary conditions. Thus, aghe wave number by the same expression as in the 1D case.
for a vortex, the dynamics with the frequenay is deter- However, one must bear in mind that such an approximation
mined by the entire region to which the magnetic material isfor j, , is valid only whenm is not very large. For modes
confined. Just as the coefficieBg in the third-order equa- with |m|>1 the first zeroj,,~|m|. Hence in a system
tions for vortices in a ferromagnet is nonlocal, so is the co-whose sizd_ is finite there is a restriction on the admissible
efficient M: it depends on the boundary conditions and di-numbers of the modes, namelyn|<L. Allowing for this
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fact, we arrive at a rule for summing over the magnon statetering problem for the partial mode with the azimuthal quan-

for a 2D magnetic material without a soliton: tum numberm=1. Note that such solutions are not known
Lk KL for all one-dimensional problems.
2 S f Odk 2 ] What is important is that the possibility of such an in-
km 7T Jo  m=-kL vestigation is not related to exact integrability of the prob-
Naturally, for the total number of magnon states we arrive ateM- Indeed, the model of an isotropic magnetic material is
the usual formulaN,p= szg/m exactly integrable in the static casesn(x,y), but nothing

Allowance for the soliton—magnon interaction leads to alS known of its integrability in the case=n(x,y,t).
shift in the magnon phase and changes, just at its does in 1D We have calculated the scattering amplitude ro# 1
systems, the expression for the density of stétesur case, (analytically in the long-wavelength approximatidiR<1
partial states for magnons with a givem) p,(k)  and forlarge values R and also numerically for arbitrary

=(1/m)ds(k)/dk. The total density of magnon states is values ofkR). We have found that the partial scattering am-

found by summing ovem: plitudes have poleg&he scattering phases pass througR)
KL KL at certain valuek&=Kk,, with k, increasing withm approxi-
(k)= 2 ()= E 2 dom(k) _ (52) mately by a linear law. This is enough to calculate the mag-
m=—kL Tm=k dK non density of states in the presence of a soliton.

We have used our results to describe various physical
wavelength region has ditegrable divergence caused by properties of solitons and local magnon modes. In particular,
the mode withm=0, for which, according td31), po(K) we have calculated the frequencies of the magnon modes for
~(2k)_1|n_2(kR) diV'ergeS in th'e limitkR— 0 [Cf (,36)0] It a magnetic material of finite dimensions. What we have

is also obvious that at low temperaturd@ssT, , whereT found is that in the small particles of ferromagnets contain-

=#D/R? for ferromagnets and, =#c/R for ;ntiferroma*g— ing a soliton(particles in what is known as the vortex state,
* - . - .

nets, it is enough to limit oneself to the long-wavelengthWhOSe properties are being widely discussed at presafu-

approximation. In particular, in the adopted approximation,ral modes arise yvith anomalously low frequencies. The data
the density of energy states can be written on the frequencies of the local modes have been used to

derive the equations of motion of a soliton in a ferromagnet.
We have calculated the magnon density of states in the pres-
g(E)= 2 : (53 : . . )
ERIN*(E/T,) ence of a soliton, which makes it possible to construct a
In principle, the density of states for an arbitrarycan soliton phenom_enology for 2_D magr_1etic materials that al-
be calculated numerically. Here the presence of a pole in th@Ws for the soliton—magnon interaction.
amplitude of scattering of magnons with a givenmeans _There are other possible applications of our results worth
that the total phase changes byr or by — 7 ask changes noting. In some of the papefsee, e.g., the review article in
from zero to infinity, with the modes witm>1 andm<1 Ref. 7) devoted to the study of ordered 1D media including
providing contributions to72(k) that are opposite in sign. magnetic materials, several nonequilibrium characteristics of
Thus, for values ok that are not small the total number of @ soliton gas, primarily, the coefficients of diffusion and vis-
magnon states does not decreéaeit does in the 1D cake cosity, were investigated. The theories developed by the re-
rather, the magnon modes are redistributed among the statégarchers were based on using the exact wave functions of
with different values ofn. In general the signs in the series magnons against the background of a soliton. The asymptotic
(52) are found to alternate. In thermodynamic calculationsexpressions for the wave function for smiltlerived in the
the temperature acts as a sort of regularizing factor in thigresent paper have made it possible to study the irreversible
summation process. The main contribution of the variougProcess for the 2D gas of elementary excitations, including
modes, in particular, the change of the number of partiafolitons and magnons, in isotropic magnetic materials at low
states by one unit, manifests itself in the order in which theemperatures.
polesk, appear in the scattering amplitude lasncreases. The results concerning the-model can easily be ex-
Sincek, increases withn (see Sec. b the contributions of tended to the Euclidean case and can be used to describe the
the modes with an ever increasimg manifest themselves quantum properties of spin chains with antiferromagnetic in-
successively as the temperature rises. teraction. The properties of such systems are determined by
the instantons of the Euclidean version of the nonlocal
o-model. Also widely discussed are instantons with a struc-
ture of the BP soliton(see Ref. 4Dand what is known as
merons, which have a half-integer topological chatgee
Thus, we have constructed the soliton—magnon scatteRRef. 41). To calculate the pre-exponential factors in the cor-
ing matrix for the simplest but physically interesting 2D responding transition amplitudeghe fluctuation determi-
model of an isotropic magnetic material. The analysis hagiany, we must know the complete set of eigenstates against
been carried out both for the Landau-Lifshitz equation, usethe instanton background. Most important are zero-frequency
to describe ferromagnets, and for the Lorentz-invarianinodes(for more details see Ref. #2Hence our results, es-
o-model, used in field theory and to describe antiferromagpecially concerning the nontrivial local zero-frequency
nets. We are the first to obtain an exact solution of the scatmodes, may prove to be important in developing the instan-

Note that the density of states?(k) in the long-

8. CONCLUSION
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Yif this fact is not taken into account, the amplitude for scattering of the
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