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We use the generalizeds-model to analytically study the solution of the problem of magnon
scattering in two-dimensional isotropic ferromagnets and antiferromagnets in the
presence of a Belavin–Polyakov soliton. We obtain the exact analytical solution to this problem
for the partial mode with the azimuthal quantum numberm51. The scattering amplitude
for other values ofm ~i.e., values not equal to unity! are studied analytically in the long- and short-
wavelength approximations and also numerically for an arbitrary value of the wave number.
We establish the general laws governing the soliton–magnon interaction. For a magnetic material
of finite dimensions we calculate the frequencies of the magnon modes. We also use the
data on local modes to derive the equations of motion of the soliton. Finally, we calculate the low-
temperature~long-wavelength! asymptotic behavior of the magnon density of states due to
the soliton–magnon interaction. ©1999 American Institute of Physics.@S1063-7761~99!02309-4#
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1. INTRODUCTION

It is now firmly established that solitons play an impo
tant role in low-dimensional magnetism, i.e., in on
dimensional~1D! and two-dimensional~2D! magnetic mate-
rials. Studies began with the simpler 1D case. Krumha
and Schrieffer1 found that solitons~kinks! must be consid-
ered on an equal basis with magnons as elementary ex
tions in the derivation of the thermodynamics of 1D ma
netic materials. Currie et al.2 construct a consisten
phenomenological theory of solitons, in which a nontriv
fact was established, namely, that the kink–magnon inte
tion substantially alters the magnon density of states, wh
has an effect on the thermodynamic properties of the sys
In particular, the temperature dependence of the soliton d
sity is determined by the shift in the magnon phase in kin
magnon scattering and can vary substantially for magn
materials with different kink–magnon interactions.3,4

A special role in soliton phenomenology is assigned
local magnon modes, which are spin waves localized a
magnetic soliton. For instance, the number of such mo
determines the total variation of the magnon density of sta
and hence the temperature dependence of the kink den3

More than that, local modes are interesting objects by th
selves, and their study is linked to direct experiments in
citing and detecting them, since by characterizing the int
sic latent degrees of freedom of the soliton the local mo
are the cause of soliton magnetic resonance at the chara
istic frequencies of ‘‘intrinsic’’ motion.5

Important results in the soliton thermodynamics of 2
5831063-7761/99/89(9)/13/$15.00
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magnetic materials were obtained by Mertenset al.6 and in
the research that followed~see the review articles in Refs.
and 7!. In research devoted to 2D solitons, the density
solitons~vortices! was taken as an external parameter of
theory. This approach was also used in analyzing the dat
the experiments in which the contribution of localized 2
solitons to the relaxation of spin excitations w
observed.8–14 The main difficulty in analyzing 2D system
lies in the absence of exact analytical solutions for m
models. Usually the solitons are treated numerically by
agonalizing with respect to small discrete systems.15–18 In
such finite geometry the soliton–magnon interaction ma
fests itself primarily in the existence of specific Goldsto
local modes with anomalously low frequencies and in
excitation of magnon modes by soliton motion. Thanks
the reverse effect, it was possible to describe the dynam
parameters of a soliton by the data on local modes.19

In this connection, an important role is played by t
analysis of such 2D models for which analytical results c
be obtained and the general laws governing the solito
magnon interaction can be established. Only one exact
lytical solution of this type is known, the Belavin–Polyako
~BP! soliton, which describes a topological soliton in an is
tropic 2D magnetic material.20 The existence of local mode
in such a system was predicted in Ref. 21 for an isotropic
ferromagnet and in Ref. 22 for an antiferromagnet. In p
ticular, it was found that a BP soliton with a topologic
chargen has 2unu local modes of zero frequency~local zero-
frequency modes!.

In the present paper we construct a solution of the pr
© 1999 American Institute of Physics
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lem of scattering of magnons by a BP soliton in 2D magne
materials. In Sec. 2 we examine the generalizeds-model,
which can be used to describe ferromagnets and antife
magnets, as well as ferrimagnets near the point of comp
sation of the sublattice spins. In Sec. 3 we formulate
scattering problem for this model and obtain its exact so
tion for the partial mode with azimuthal quantum numb
m51. Sections 4 and 5 are devoted to calculations of
scattering amplitude for the other values ofm(nÞ1) analyti-
cally in the long-wavelength approximationkR!1 ~Sec. 4!
and numerically for arbitrary values ofkR ~Sec. 5!, wherek
is the wave number andR is the radius of the soliton core. I
the sections that follow we use the results to describe
various physical properties of solitons and local magn
modes. Section 6 deals with calculations of the frequenc
the magnon modes for a magnetic material of finite dim
sions. In the same section, using the data on local modes
derive the equations of soliton motion. In Sec. 7 we calcu
the magnon density of states for which the soliton–mag
interaction is responsible. In the Conclusion we discuss
different ways in which the theory could develop and t
possible applications.

2. THE MODEL. ELEMENTARY EXCITATIONS

A broad class of classical isotropic Heisenberg 2D m
netic materials can be described dynamically in terms of
classical unit vectorn of the order parameter, i.e.,nz

5cosu andnx1 iny5sinu exp$if%. The dynamics of a clas
sical ferromagnet is described by the Landau–Lifshitz eq
tion for the normalized magnetization,23 which acts as the
dynamic variablen. In a classical antiferromagnet, the d
namic variable is the antiferromagnetism vector, which in
long-wavelength approximation can be assumed to be a
vector. The dynamics of an antiferromagnet is described
the equations of thes-model of then-field.24,25

In the interests of generality we examine two types
magnetic materials within a unified approach, more p
cisely, on the basis of a generalizeds-model, whose La-
grangian in the 2D case can be written26

L5
A

2 E d2xH 1

c2 S ]u

]t D
2

2~¹u!21sin2 uF 1

c2 S ]f

]t D 2

2~¹f!2G2
2

D
~12cosu!

]f

]t J , ~1!

whereA5JS2, whereJ is the exchange integral andS is the
atomic spin. The specific type of magnetic material is de
mined by the relationship between the parametersc andD.
To describe a ferromagnet we must drop the second t
derivatives in the equations of motion, i.e., formally letc go
to infinity. The dynamic term in the Lagrangian of the ferr
magnet is of a purely gyroscopic nature, with the parame
D having the meaning of the spin stiffness of the ferrom
net. The dynamics of an isotopics-model describing an an
tiferromagnet has a Lorentz-invariant form with a charact
istic speed parameterc. For an antiferromagnet there is n
gyroscopic term~the coefficientD can be taken to infinity!.
Note that the generalizeds-model for finite D and c de-
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scribes a ferrimagnet near the point at which the mechan
moments of the sublattices are balanced. For such a mag
material the gyroscopic term has the same structure as
ferromagnet but is proportional to the small parameterS1

2S2)/(S11S2), whereS1 andS2 are the average mechan
cal moments of the sublattices.27,28

The simplest elementary linear excitations of a 2D is
tropic magnetic material that arise against the backgroun
the ground homogeneous state are the magnons belongi
the continuous spectrum. If we select the orientation of
order-parameter vectorn along the polar axis, we get mag
non solutions in the form of a circularly polarized waveu
5const!1, F5kr 2v(k)t. The dispersion law for a ferro
magnet is quadratic,vFM(k)5Dk2. For an antiferromagne
the dispersion law is linear,uvAFM(k)u5ck, and there are
two degenerate branches with opposite circular polarizatio
v56ck, which is equivalent to the possibility of linear po
larization of magnons.

The simplest static nonlinear excitations in the 2D ca
are the BP solitons,20

tan
u0

2
5x2unu, f05w01nx, x5

r

R
, ~2!

which, naturally, has the same form for a ferromagnet,
antiferromagnet, and a ferrimagnet. Herer and x are the
polar coordinates in the plane of the magnetic material,
integern is the topological charge of the soliton, andR and
w0 are arbitrary parameters.

The energy of such a soliton is given by the formula

E054pAunu ~3!

and is independent ofR andw0 . The ambiguity in the choice
of w0 is a characteristic feature of many models and a c
sequence of the isotropy of the Heisenberg exchange.
existence of an arbitrary parameterR ~the soliton radius! and
the fact that the energy is independent ofR are related to the
scale invariance of the static two-dimensionals-model.23

Obviously, this symmetry is broken in dynamics, with th
exception of the trivial case of a pure antiferromagnet a
translational motion, when everything reduces to Lore
transformations.

In analyzing the static solutions it is convenient to intr
duce the complex-valued order parameterw5(nx1 iny)/(1
2nz) and interpret it as a function of the complex variab
z5reix describing the position of a point in the plane of th
magnetic material. In terms of these variables, the st
equations of the s-model reduce to the self-dualit
equation29 ]w/]z50 or ]w/]z̄50. The BP soliton corre-
sponds to the simplest solution of this equation of the fo

w05Azn for n.0, w05Az̄2n for n,0. ~4!

There are also more general solutions to this equation of
form 5 f (z) or w5 f ( z̄), wheref is any analytic function of
the complex variablez. In particular, the static multisoliton
solution with the topological chargen depends on 2unu
parameters23 and can be written
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w5A
)k51

n ~z2ak!

)k51
n21~12bkz!

for n.0 ~5!

~constructing the same general solution forn,0 is a trivial
task!. The energy associated with this solution is determin
by ~3! and is independent of the parametersA, ak , andbk .
We associate the soliton center with the valueu5p, this
solution has~for different ak and bk! n solitons with unit
topological charges at the pointsz5ak . If all ak coincide,
then atbk50 the solution~5! coincides with~4! and de-
scribes one soliton with the topological chargen at point z
5ak . Thus, variations in the parametersak and bk has a
strong effect on the structure of the soliton but do not cha
its energy or topological charge. This means that a BP s
ton has extremely high internal degeneracy, which refle
the property of conformal invariance of the static tw
dimensionals-model.20,29 Hence a BP soliton consists of
set of local modes with a zero frequency. The explicit fo
of these zero-frequency modes can be obtained by var
~5! in the parametersak andbk . In the limit ak ,bk→0, the
soliton can be represented by the expansion

V[
w2w0

w0
5 (

m52n11

n
Am

zm for Am→0, ~6a!

or, introducing the deviationsu andf from the quantitiesu0

andf0 into the simplest equation~2!, by the formula

u2u01 i sinu0~f2f0!52
sinu0Am

~ z̄ !m
. ~6b!

This implies that there are 2unu independent types of sma
perturbations that do not alter the soliton energy. Their fo
is determined by the functionV}( z̄)2m}exp$imx%. This is
equivalent to the statement that 2unu local modes with a zero
frequency are associated with a BP soliton~see below!.

3. MAGNON MODES IN THE PRESENCE OF A SOLITON

To describe the magnon excitations that arise agains
background of a BP soliton, it is convenient to introdu
local coordinates$e1 ,e2 ,e3% characterizing the distribution
of the order parameter in a fixed soliton:e3 coincides with
the order parametern0 of the immobile soliton~2!, e1

5ey cosf02ex sinf0, ande25e33e1 . Then the linear oscil-
lations of the order parameter can be described in term
the projections ofn on the local axese1 ande2 : q5n–e1 and
m5n–e2 ~q and m/sinu0 are the small deviations fromu0

andf0 , respectively!.
The linearized equations forq andm can be represente

in the form of the system of equations

F2¹x
21

1

x2

]2

]x2 1U1~x!Gq1
2n

x2

3cosu0

]m

]x
1

R2

c2

]2q

]t2 1
R2

D

]m

]t
50,
d
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F2¹x
21

1

x2

]2

]x2 1U2~x!Gm2
2n

x2

3cosu0

]q

]x
1

R2

c2

]2m

]t2 2
R2

D

]q

]t
50, ~7!

where ¹x
2[(1/x)]/]x(x]/]x) is the radial part of the

Laplace operator andU1(x)5(n/x)2cos 2u0 and U2(x)
5cotu0¹x

2u02(du0 /dx)2 are the ‘‘potentials.’’18,19 Using the
explicit form ~2! for the static solution, we can easily sho
that the ‘‘potentials’’ in both equations are the same. T
fact is unique for the isotropics-model. For instance, for
vortices in a magnetic material with easy-magnetizat
planes,18,19 the potentials differ substantially. The very fa
that the potentials are different not only complicates
analysis technically~in comparison to the ordinary Schro¨-
dinger equation! but also introduces serious problems.
particular, for systems of the form~7! with unequal poten-
tials U1 and U2 many general assertions of the type of t
oscillation theorem have yet to be formulated. In Ref. 18
was shown that equations of this form may have truly loc
ized states with an exponential decrease of the wave func
and energies inside the continuous spectrum, which is
bidden for equations of the Schro¨dinger form.

In the degenerate case considered here the mag
modes can be described by a single complex-valued par
eterC5q1 im, which obeys the second equation

F2¹x
21

1

x2

]2

]x2 1
n2

x2 cos 2u0GC2 i
2n

x2 cosu0

]C

]x

1
R2

c2

]2C

]t2 2 i
R2

D

]C

]t
50, ~8!

whose analysis is almost the same as that of the Schro¨dinger
equation. It is convenient to seek the solution of Eq.~8! in
the form of a partial-wave expansion:

C5 (
m52`

`

f m exp$ imx2 ivt%. ~9!

Here each partial wavef n is an eigenfunction of the spectra
problem

Ĥ f m5¸2f m , ¸5kR, ~10!

for the 2D radial Schro¨dinger operatorĤ52¹x
21Um(x)

with the potential

Um~x!5
m212mn cosu01n2 cos 2u0

x2 .

The spectrum of the problem~10! is continuous and is de
scribed by functions of the formf m

¸ , with ¸>0. Clearly, the
zero-frequency modesf m

0 correspond to solutions21

f m
(0)5x2m sinu0 . ~11!

These modes correspond to perturbations of the form~6!,
i.e., their presence is due to the conformal invariance of
problem. Here and below, for the sake of definiteness,
examine the case wheren.0, and to analyze solitons with
n,0 it is enough to replacem by 2m. This solution be-
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haves regularly asr→0 only for partial modes with2`
,m<n. A simple analysis of Eq.~11! shows that for2n
11<m,` the function f m

(0) , regular asr→0, also de-
creases far from the soliton. Hence for2n11<m<n these
functions are finite over the entire range ofr . This corre-
sponds to the earlier conclusion that a BP soliton with
topological chargen has 2unu local modes represented in~6!.
Note that the physical meaning of two of these modes
obvious: the translational modef m51

(0) describes the displace
ment of the soliton as a whole, and the rovibrational mo
f m50

(0) describes the rotation and change of the soliton rad
~which corresponds to an ambiguity in the choice of the
sition of the soliton center and to arbitrary values ofw0 and
R, respectively!. The established bound states~local modes!
are limits for the magnon modes of the continuous spect
as ¸→0, on contrast to the case of 1D magnetic mater
~see the review in Ref. 3!.

Using the standard method of varying the arbitrary co
stant, we can find the second linearly independent solutio
Eq. ~10! with ¸50:

f m
(1)5xmS x2n

m1n
1

2

m
1

x22n

m2n D sinu0 , ~12!

which is regular at zero whenm.n.
Thus, atv50 one of the solutions,~11! or ~12!, for all

m has no singularities at zero. We use this solution to a
lyze scattering at small~but finite! values ofv in the range of
small r .

The exact solutionsf m
(0) that have been found can b

used to simplify the problem of the analysis of the contin
ous spectrum on the basis of the Darboux transformatio30

The same approach has been used in Refs. 31 to study th
case. To explain the method, we introduce the Hermiti
conjugate lowering and raising operators

Â52
d

dx
1

f m
(0)8

f m
(0) , Â†5

d

dx
1

1

x
1

f m
(0)8

f m
(0)

such thatÂf m
(0)50 ~here and in what follows a prime stand

for a derivative with respect tox!. By introducing these op-
erators we can represent the Schro¨dinger operatorĤ in the
factorized form Ĥ5Â†Â. What is important is that this
makes it possible to reformulate the initial problem~10! in
terms of the eigenfunctionsgm

¸ 5Âf m
¸ of the spectral problem

of the form

Ĥgm5¸2gm , Ĥ[ÂÂ†52¹x
21Um , ~13!

where the potential is

Um~x!5
~m21!21n212n~m21!cosu0

x2 .

Note that far from the soliton~as u0→0! the potentialUm

becomes the centrifugal potential of the form (n1m
21)2/r 2, which depends explicitly on the azimuthal numb
labeledm21, which explains the terminology used for th
operatorsÂ and Â†.

The initial functionf m is restored by applying the raisin
operator:
a

is

e
s
-

m
ls

-
of

a-

-

1D
-

r

f m
¸ 5

1

¸2 Â†gm
¸ . ~14!

The transformation we have just carried out simplifi
the problem for the translational mode (m51) substantially.
Indeed, in this caseU1(x)5n2/x2 for all values ofx, i.e.,g1

¸

determines the free motion. In view of this, the regular so
tion has the formg1

¸52Jn(¸x). Restoring the initial func-
tion by ~14!, we get

f 1
¸5Jn11~kr !2

2n

kr

Jn~kr !

~r /R!2n11
. ~15!

The existence of this exact solution for all values of t
wave vectork is a unique property of the model~1!. For
other values ofm ~as earlier, for the case of magnon scatt
ing by magnetic vortices in ferromagnets19 and
antiferromagnets18 with planes of easy magnetization!, the
problem can be solved only approximately or by numeri
methods.

The solution~15! demonstrates an important feature
magnon modes, which is absent in the cases discusse
Refs. 18 and 19, where the exponential decrease of the
viation of magnetization from the easy-magnetization pla
in a vortex far from the vortex center is a characteristic fe
ture. Equation~15! shows that the deviation off 1

¸ from the
asymptotic termJn11(kr) is not localized in a region with a
definite radius; instead it is characterized by a slow
~power-law! decrease. More than that, for the most intere
ing cases of long-wavelength asymptotic behavior, fork
!1/R, the solution~15! over a broad range of values ofr , or
R!r !1/k, has the same form as a combination of Bes
and Neumann functions, Jn11(z)}zn11 and Nn11

}z2(n11), i.e., the second term in~15! imitates the presence
of the function N. ~Below we will see that this property
remains valid for all values ofm.)

For magnetic vortices, the corresponding corrections
exponentially decreasing functions of the form exp$2r/rv%,
wherer v is the radius of the vortex core. In view of this, th
scattering amplitude, i.e., the coefficient of the Neuma
function, can be determined from the coefficient of 1/zm in
the region wherez!1. This is not true, however, in our cas
with the result that the method developed in Ref. 19
magnetic vortices and used to analyze the scattering ma
by analyzing the corrections to the zero-frequency mode
the regionr v!r !1/k needs to be thoroughly modified1! if
we wish to use it in our problem. This modification is don
in Sec. 4.

On the other hand, the terms with a power-law decre
of the form 1/r a, a.1/2, must be taken into account whe
we describe the properties of magnon modes in a magn
material of finite size with a soliton. This is done in Sec.

4. SCATTERING IN THE LONG-WAVELENGTH LIMIT

To describe the scattering of magnons by a BP solit
we note that free magnon states can be found if we sen
50 in the ‘‘potential’’ Um(x). The resulting magnon mode
f m,n50

¸ 5Jm(z), with z5kr, are the partial cylinder waves o
a plane spin wave of the form
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exp$ ik–r2 ivt%5 (
m52`

`

i mJm~z!exp$ imx2 ivt%. ~16!

In the presence of a soliton the behavior of the magn
solutions can be analyzed at large distances from the so
(r @R). In view of the asymptotic behaviorUm(x)'n2/x2,
in the leading approximation in 1/x we have the usua
result21

gm}Gm~z![Junu~z!1sm
n Nunu~z!, n5n1m21,

f m}Fm~z![Jupu~z!1sm
n Nupu~z!, p5n1m ~17!

~below we also use the notation involvingn and p, and
Gm(z) andFm(z) for the combination of cylinder function
of the specific form presented in~17! with allowance fors!.
A comparison of the asymptotic behaviors ofGm(z) and
Fm(z) with each other and with the solution~16! for free
magnons suggests thatsm

n [sm
n (¸) determines the soliton–

magnon scattering amplitude. Since the coefficientss are the
same forFm and Gm , to calculate the scattering amplitud
sm(¸) we can use the initial problem or the modified pro
lem. In particular, there is no scattering for the translatio
mode. Unfortunately, there is no way in which we can fi
analytical solutions for the other modes, but the scatter
can be analyzed fairly thoroughly in the limiting cases.

To analyze soliton–magnon scattering in the case
small k, we can use the fact that atk50 we know the exact
solutionsf m

0 : ~11! for m<n and~12! for m.n. In this case,
we can construct the solution for small but finitek(k!1/R)
by using a perturbation-theory expansion ink2. To this end
we seek the solution in the formf m

¸ 5 f m
0 (11¸2a(x)), where

¸2a(x)!1. The functiona(x) is determined by an inhomo
geneous second-order linear equation, whose solution ca
found by the method of variation of the arbitrary constan
the two linearly independent solutions of the homogene
problem are known. For a magnetic material with ea
magnetization planes this can be done only for the tran
tional mode.19 In the case of an isotropic magnetic mater
the solutions can be found by this method for arbitrary v
ues ofm ~see Refs. 32 and 22!.

In deriving a specific solution it is convenient to emplo
the modified problem by using the first-order equati
Â†gm

¸ 5¸2f m
0 , where f m

0 is the zeroth solution, bounded a
x→0. Whenm<n, the functionf m

(0) is such a solution, from
which we easily find that

gm
¸ 5

¸2

x fm
(0) F (0)~x!,

F (0)~x!5E
0

x

~ f m
(0)~j!!2jdj, for m<n. ~18a!

The same formulas can be used to readily restore
explicit form of the solutionf m

¸ of the initial problem:

f m
¸ ~x!5 f m

(0)~x!F12E
0

x gm
¸ ~j!

f m
(0)~j!

djG . ~18b!

Analysis of this solution has shown that in a broad interva
r values, 0<r !Rs(1/k)12s ~the values of parameters are
n
on

l

g

f

be
f
s
-
a-
l
-

e

f

between 0 and 1 and depend onm!, the addition to the zeroth
solution f m

(0) is small and perturbation-theory techniques c
be used.

The same laws stand for the magnon mode withumu
51 scattered by a vortex in a magnetic material with ea
magnetization planes.19 Since the deviations from the
asymptotic solution were found to be exponentially sma
both solutions are valid forR!r !1/k, the asymptotic solu-
tion ~18b! and of the form~17!. This made it possible to find
the coefficient of the Neumann functionNunu(kr) ~with al-
lowance for the fact thatNunu(kr)}(kr)2unu where kr!1!
and to write an analytical formula fors umu51(k). In our case,
however, the situation is more complicated. As noted in S
3 in the discussion concerning the exact solution~15!, the
asymptotic solutions far from the soliton contains correctio
that decrease by a power law. Although they do decre
faster than the asymptotic solution~18b!, it is very important
to account for them. In particular, they may have the sa
form as the Neumann function forz!1.

Thus, to calculate the scattering amplitude we must co
pare the approximate solution~18b! not with the asymptotic
form ~17! but with the refined solution that allows for term
increasing by a power law far from the soliton. FormÞ1 the
corrections can be expressed by exact formulas, but they
easily be calculated in the long-wavelength approximat
k!1/R, where we can assume thatkR!z5kr!1.

To do this, we introduce the variablez5kr5¸x into Eq.
~13!. Then the combination (R/r )n in u0(r ) becomeş n/zn

and vanishes for finitez as ¸→0. Hence in the limit¸
5kR→0 Eq. ~13! simply becomes a Bessel equation wi
the solution~17!, and the corrections can be found by a s
ries expansion in powers of (¸/z)n. Keeping only the first
nonvanishing approximation iņ n and representing the
asymptotic solution in the formgm

¸ (z)5Gm(z)1G n,m
¸ (z),

we arrive at the inhomogeneous Bessel equation

¹z
2
G 1S 12

n2

z2 D G 5
4n~12m!

z2 S ¸

2D 2n

Gm .

We see that to this accuracy the solution far from the soli
can be expressed in terms of the universal functionG unun(z),

gm
¸ ~z!5Gm~z!14n~m21!¸2nG unu,n~z!, ~19!

which can be found by solving an equation of the form

¹z
2
G unu,n1S 12

n2

z2 D G unu,n52
Gm

z2(n11) .

Using the standard method of variation of an arbitrary co
stant, we can write the solution of this equation in integ
form:

G unu,n~z!5
p

2
Nunu E

z

` Gm~z!Junu~z!

z2(n11) dz

2
p

2
Junu E

z

` Gm~z!Nunu~z!

z2(n11) dz. ~20!

Here integration can be carried out exactly, and atunu5n the
answer isG n,n52gn

(0)/8n2z2n.
But if unuÞn, we have the recurrence relation
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G unu,n5G n21Aunu,n1Bunu,n ,

Aunu,n[
2n21

2n~n22n2!
, Bunu,n[

zgn21
(0) 1~n2n!gn

(0)

4n~n22n2!z2n ,

which yields

G unu,n5G 1 )
k52

n

Aunu,k1 (
k52

n21

Bunu,k )
i 5k11

n

Aunu,i1Bunu,n .

Limiting ourselves to corrections to the Bessel function, i
taking Gm5Junu in ~20!, we arrive ~after involved calcula-
tions that use the properties of cylinder functions! at an ex-
pression forG 1 :

G unu,1~z!52
Junu~z!

4~n11! F 1

z2 1
ln~z/2!2c~ unu11!

n~n11! G
1

Junu21~z!

4z~n221!
1

1

4unu~n221!

3 (
k51

`

~21!k
~ unu12k!Junu12k

k~ unu1k!

1
pNunu~z!

8unu~n221!
, ~21!

wherec(x) is the Euler psi function.
Thus, as with the exact solution~15!, the asymptotic

behavior of the solution forr @R differs from that in mag-
netic materials with easy-magnetization planes discussed
lier. Even ifs50, i.e., there is no scattering, in the region f
from the solution but withr finite (R!r !1/k), the solution
contains a number of terms that formally diverge asz→0
(kr!1). In this case, forsÞ0, in the regionR!r !1/k of
interest to us, the solution of the scattering problem can
written

g~z!}Junu~z!14n~m21!¸2nG unu,n~z!1sNunu~z!. ~22!

Here we did not include the corresponding corrections to
Neumann function, since we can easily show that they c
tain higher orders of̧ and are unimportant.

By comparing the approximate solution~18! valid for
0,x!1/̧ with the solution~22! valid for 1!x!1/̧ we can
now find the scattering amplitudesm(¸). In analyzing this
problem it is convenient to examine the different ranges
variation of the parameters separately.

1. The caseunu,n incorporates both local modes wit
their numbersm taken from the interval2n11,m,1 (0
,n,n) and nonlocal modes for which22n11,m,2n
11 (2n,n,0). In finding the asymptotic solution~18a! of
the equation we realize that far from the soliton the ze
frequency modes have the form

f m
(0)'

2

xn11 S 12
1

x2nD . ~23!

Hence we arrive at an approximation forF (0)(x) in the im-
portant regionx@1:

F (0)~x!'F02
2

n
x22n1

4

n1n
x22n22n,
.,

ar-

e

e
n-

f

-

F05
2p~n2n!

n2 sin~pn/n!
, ~24!

where the contribution of the constantF0 is crucial when
n.0 but is a small correction whenn,0.

Integration in~18a! with the use of~23! and~24! leads to
an expression forgm

¸ :

gm
¸ ~x!}F0xn2

2

n
x2n. ~25!

Here we have ignored terms of the formx22n in comparison
to x22unu.

Let us compare the asymptotic solution we have j
found with the solution~22! of the scattering problem. Using
the expansion of cylinder functions for small values ofz and
comparing the resulting asymptotic expressions, we concl
that the termxunu in ~25! is related to the Bessel functionJunu ,
while the termx2unu is related to the Neumann functionNunu
and determines the scattering amplitudes. A simple com-
parison leads to an asymptotic expression for the scatte
amplitudes:

sm
n ~¸!5

p~nF0/2!n/unu

unu! ~ unu21!! S ¸

2D 2unu

, ~26!

with 22n11,m,1 andmÞ2n11. Note that allowance
for the correctionsG unu,n leads to a contribution tos of order
¸2n, which is insignificant in the given range of paramete

2. The caseunu.n is realized form,22n11 andm
.1. Integration in~18a! with the use of the same approx
mations~23! and ~24! leads to the asymptotic solution

gm
¸ ~x!}xunuS 11

n1unu
n1n

x22nD , ~27!

in which only the leading corrections in 1/x are retained.
The asymptotic expression~27! is valid for m<n, when

the zeroth solutionsf m
0 are described by the functionsf m

(0) . A
similar calculation can be done form.n, where for the ze-
roth functions we usef m

(1) :

gm
¸ 5

1

x fm
(0) ~12¸2F (1)~x!!,

F (1)~x!5E
0

x

f m
(0)~j! f m

(1)~j!jdj for m.n. ~28!

Calculating the integral in~28!, we arrive at the asymptotic
expression~27! for n.1. For n51 the asymptotic solution
for modes withm.1 is

gm
¸ ~x!}xmS 11

1

x2 2
¸2

m~m11!
ln xD . ~29!

Thus, the asymptotic solutions~27! and~29! obtained for
unu.n differ dramatically from the earlier solution~25!: the
solutions ~27! and ~29! do not contain terms of the form
1/xunu and hence cannot yield an asymptotic expression of
form Junu1sNunu . This is possible only if in the solution~22!
the correctionG unu,n is balanced by the scattering termsNn .
Note that this is an extremely stringent condition: not on
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must the terms 1/xunu be balanced but also all terms of th
form x2k/xunu, where 0<k<unu21. Allowing for the term in
G unu,n related toNn @see~21!#, we get

4n~m21!¸2n
pNn

8n~n221! )
k52

n

Ak1sNn50,

which yields a formula for the scattering amplitude:

sm
n ~¸!5A m

n S ¸

2D 2n

, 22n11,m,1, mÞ2n11,

A m
n 52

p2n~2n21!!!

~n21!! umu~m11!...~m12n21!
. ~30!

3. The special casesunu5n and unu50 where the solu-
tions ~30! and ~26! become invalid include the translation
mode (m51), the local mode withm52n11, and the non-
local mode withm522n11. For the translational mode th
exact solution~15! yields s50. A calculation done on the
basis of~18a! and a comparison of the results with the so
tion ~22! of the scattering problem lead in the other two ca
to the following asymptotic expressions fors:

sm
n ~¸!5

p

2 ln~1/̧ !
, m52n11, ~31!

sm
n ~¸!5

4p

@~n21!! #2 S ¸

2D 2n

ln
1

¸
, m522n11. ~32!

The above analysis of scattering in the long-wavelen
limit makes it possible to calculate the scattering amplitu
in the long-wavelength approximation, i.e., fork!1/R. At
this point in our discussion, several general remarks conc
ing the nature of soliton–magnon scattering are in order

It was found that ask→0 the scattering amplitude
sm(k) tends to zero for all values ofm andn. In most cases
the amplitudesm(¸) given by Eqs.~30! and~26! is a regular
function of ¸. In contrast to~30! and ~26!, for parameter
values specified by~31! and ~32! there exists a derivative
dps/d¸p that has a singularity. The order isp51 for
m52n11, with the scattering being at its maximum. Su
nonanalytic behavior ofs(k) was detected in the numerica
analysis of scattering of magnons withm50 by a vortex in
an antiferromagnet with an easy-magnetization plane don
Ref. 18 ~see also Ref. 32!. The scattering intensity~in con-
trast to the case of magnetic vortices discussed in Refs
and 19! is not at its maximum for partial waves with smalle
values ofm (m561,0).

The very fact that for a partial wave with a givenm the
limit point k50 serves as the local zero-frequency mode
not critical for the scattering intensity. In particular, th
mode withm51 ~the well-known translational mode! does
not undergo scattering.

We also note that for the case of scattering by a
soliton there are no simple relationships that link the scat
ing intensities form51umu andm52umu. For scattering of
magnons by a vortex in magnetic materials with ea
magnetization planes, such relationships were establishe
numerical analysis: for antiferromagnetssm

n (k)5s2m
n (k)
-
s

h
e

n-

in

18

s

P
r-

-
by

~Ref. 18!, while for ferromagnetssm
n (k) ands2m

n (k) can be
obtained from each other by changing the sign of the m
non frequency~Ref. 19!

In conclusion of this section, we give the general so
tion of the problem of the scattering of a plane spin wave
a BP soliton. It is convenient to formulate the solution

terms of the variableC̃5C exp$inx%, which becomes (nx

1 iny)exp$2ivt% as r→` and describes a spin wave prop
gating against the background of the homogeneous state
niez . The need to pass fromC to C̃ can be explained by the
fact that although far from the soliton the magnetization
homogeneous,e3iez, the unit vectorse1 ande2 depend onx.
With allowance for~9! and~17!, the asymptotic solution for
r @R can be written

C̃5 (
m52`

`

Cm~Jn~kr !1sm
n ~¸!Nn~kr !!exp$ inx2 ivt%,

~33!

wheren5n1m, and theCm are arbitrary constants. Usin
asymptotic expressions for the cylinder functions in the
gion r @1/k and selectingCn on the basis of a comparison o
~33! with the asymptotic expression~16! for free motion, we
can write the general solution of the problem of scattering
a plane spin wave:

C̃5Fexp$ ik–r%1F ~x!
exp$ ikr %

Ar
Gexp$2 ivt%,

F ~x!5
exp$2 ip/4%

A2pk
(

m52`

`

~exp$2idm
n %21!

3exp$ i ~n1m!x%. ~34!

In ~34! we have introduced the scattering phasedm
n (¸),

which is related to the scattering amplitude by the sim
formula s52tand.

The total scattering cross section is given by the form

%5E
0

2p

uF u2dx5 (
m52`

`

%m ,

where the%m5(4/k)sin2 dm
n are the partial scattering cros

sections.
As noted earlier, for smallk, the maximum scattering is

related to the local mode withm52n11, for which, ac-
cording to~31!, the scattering phases5p/2 ln¸. Hence, in
the leading approximation ink it is enough to limit oneself to
the contribution of this mode, with the result that we arrive
an expression for the scattering function of the form

F ~x!'Ap

2k

exp$ i ~x1p/4!%

ln kR
, k! 1/R . ~35!

In this approximation the scattering is isotropic (uF (x)u is
independent ofx!. The corrections to this expression are
order 1/(kR)2n11/2 and are important only for determinin
the anisotropy ofF (x).

The total scattering cross section~which has an inte-
grable singularity! in the limit ¸→0 is given by the formula
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%~¸!'
p2

k ln2 kR
, k! 1/R . ~36!

5. ANALYSIS OF SCATTERING DATA FOR MODERATE
VALUES OF k

The scattering can also be treated analytically in
short-wavelength limit,k@umu/R. It is natural to assume tha
in this case the problem can be analyzed in the quasiclas
approximation, which yields

gm
¸ }Ap~x!

x
cosFconst1E

x0

x

p~j!djG ,
p2~x!5¸22Um~x!1

1

4x2 . ~37!

Indeed, analysis shows that~37! is valid for all values ofz
5kr larger than the coordinate of the turning point,z0

5¸x0 , which corresponds to the conditionp(x0)50. The
value ofx0 is small,x0;umu/¸!1.

On the other hand, at small distancesr !R (x!1) the
‘‘potential’’ Um has the asymptotic formUm'(n2m
11)2/x2, i.e., it describes free magnons of the form~16!
with a mixed index:

gm}Jun2m11u~z!, f m}Jun2mu~z! for r !R.

For k@umu/R, there is a broad range of values ofr , umu/k
!r !R, in which we can limit ourselves to the asymptot
expression for the Bessel function in the limitz@1 and z
@umu:

gm
¸ }Jun2m11u'A 2

pz
cosS z2

1

2
un2m11u

2
p

4
1

4~n2m11!221

8z D . ~38!

To within terms of order 1/z2, the solutions~37! and
~38! coincide in the entire range of parameter overla
Hence, doing the asymptotic expansion of~37! far from the
soliton, we arrive at the short-wavelength asymptotic expr
sion for the scattering amplitude:

sm
n ~¸!'

p~m21!

sin~p/2n!

1

¸
, ¸@umu. ~39!

Most importantly, this formula reproduces a property
the exact solution~15! according to whichsm

n 50 holds at
m51. More than that, the scattering amplitude asympt
cally tends to zero as 1/¸ for all mÞ1, with the s being
equal in absolute value but having opposite signs for mag
modes withm5umu and m52umu12. Below we will see
that this result plays an important role in the analysis
density of magnon states in a 2D magnetic material.

Now we can compare the scattering amplitudes in
long- and short-wavelength limits. Clearly,s→0 in both
cases, but the signs ofs(¸) for ¸→0 and¸→` are oppo-
site. This situation is characteristic of magnon scattering b
1D soliton in the sine-Gordon andf4 models and of the
Landau–Lifshitz equation~see the review article in Ref. 3!.
It can be assumed that for a certain finitek5kp the scattering
e

cal

.

s-

f

i-

n

f

e

a

amplitude has a pole. Naturally, there is no real divergenc
this pole: the physically observed scattering phasedm

n varies
monotonically. The existence of a pole means that the t
increment of the scattering phase,d(`)2d(0), is finite. Ac-
cording to numerical calculations for a soliton with a top
logical chargen51, this increment is equal top ~to within
sign!, i.e., each mode is associated with a single pole. Suc
singularity manifests itself in the analysis of the number
magnon degrees of freedom~see Sec. 7!.

To analyze the intermediate valueskR;1, we solved the
scattering problem numerically. The calculations were do
by numerical integration of the spectral equations for
initial problem @Eq. ~10!# and the modified problem@Eq.
~13!# within a broad range of values ofkR and m: 1023

,kR,103 and220<m<20 ~the results of each calculatio
agree with what was said earlier!. Basically we are interested
in case withn51, where the soliton energy is at its min
mum. However, some data were obtained forn52, 3, and 4,
too.

Numerical calculations verified the long- and sho
wavelength asymptotic expressions for the scattering am
tude given above. In the intermediate region of wave-vec
values,k;1/R, there are poles in the scattering amplitud
at k5k1p for all the modes in question~Fig. 1 depicts the
data for the modes with different values ofm in the case of
a soliton withn51!.

Let us discuss the problem of the position of the poles
the scattering amplitude in greater detail. According to
numerical data atn51, for all mÞ1 there is only one pole a
k5kp . Here kp increases withumu, and the functionskp

5kp(m) are different form51umu and for m52umu ~the
reader will recall we are dealing with solitons withunu51!.
For very large values ofumu the pole goes to infinity~Fig. 2!.
The situation becomes more complicated whenn.1. More
precisely, preliminary numerical data show that for a giv
m there can be several poles, with their numberNm not ex-
ceedingn.

For comparative analysis of the scattering of modes w
different values ofm, we write explicitly the asymptotic ex-
pression for the scattering phase atn51:

FIG. 1. Plots ofdm vs. kR for n51, labeled with the corresponding value
of m. The dashed straight lines drawn through the valuesudmu5p/2 desig-
nate the positions of the poles of the scattering amplitude.
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d~¸!'H p sgnmS 12
¸2

2m~m11! D , ¸!1, mÞ21,0,

p~12m!

¸
, ¸@umu.

~40!

Assuming that these equations are valid at least qualitati
and settinģ ;1, we can make a rough estimate of the p
sition of the pole by equating the values ofd(¸) for ¸!1
and for ¸@1. This yieldskp'umu/R for umu@1. Such an
estimate reproduces fairly accurately the linear increase ikp

as a function ofumu for large values ofumu ~see Fig. 2!.

6. MAGNON MODES IN A MAGNETIC MATERIAL OF FINITE
SIZE

The foregoing analysis of the scattering problem in
long-wavelength limit can be used to study the natural m
non modes in a magnetic material of a finite surface a
containing a soliton. Such a problem plays an important r
in many applications. Firstly, its solution can be used to
scribe analytically the data obtained through computer sim
lations of soliton motion, which are always done for syste
of finite dimensions. In particular, in Refs. 33 and 19, th
approach was used to describe the dynamics of a vortex
ferromagnet with an easy-magnetization plane and to ve
the non-Newtonian equations of motion containing third d
rivatives of the vortex coordinates with respect to time. S
ondly, as noted earlier, this calculation can be used dire
to describe the natural modes for the small particles of
magnetic material, which are in what is called the vort
state.34

We begin with the simplest case of the magnon mode
a circular system with a finite radiusL and a soliton at the
center. We discuss both the Dirichlet boundary condition

C~r ,x!ur 5L50, ~41!

which correspond to a fixed value of magnetization at
boundary, and the Neumann boundary conditions

FIG. 2. The positions of the poleskp as a function of the mode numberm at
n51. Then correspond tom.0 and thes to m<0.
ly
-

e
-
a

le
-
-

s

a
fy
-
-
ly
e

x

in

e

]C~r ,x!

]r U
r 5L

50, ~42!

which model the case of free boundary conditions. There
no difficulty in extending these results to the case of gene
boundary conditions, but we do not do this here. The m
non spectrum in such a system is discrete. In the absenc
solitons, the characteristic wave numberskm,i are equal to
j m,i /L, wherej m,i is thei th zero of the Bessel functionJm or
the derivative of this function for the case~41! or ~42!, re-
spectively.

In a magnetic material with a BP soliton, whenk is
large, we can ignore the local part of the function and wr
Jn(kL)1s(k)Nn(kL)50. It is natural, then, to expect th
same behavior fromk, i.e.,k5 j /L, wherej lies between the
values of the corresponding root of the Bessel or Neum
functions or the derivatives of these functions.

However, for 2n,m<n, i.e., in the case of zero
frequency modes, the symmetry of the problem is high~scale
invariance is restored!. Hence we should expect the occu
rence of Goldstone modes. In an unlimited~infinite! mag-
netic material, the frequencies of the Goldstone modes
zero, while in the presence of a boundary these modes m
fest themselves as modes with very low frequencies,
kL!1. In particular, such modes arise for a vortex in a f
romagnet with an easy-magnetization plane in the c
whereumu51, which corresponds to translational motion
the vortex. For this mode,k;r v /L2!1/L, wherer v is the
radius of the vortex core. Since in this case the solution
approximated by~17! with an exponential accuracy even fo
r .r v , the existence of Goldstone modes is determin
solely by the scattering matrix.

When we are dealing with a BP soliton, in the analy
of Goldstone modes it is not enough to limit oneself to
solution in the form~17! corresponding to the scatterin
problem—one must also allow for the local part of the so
tion. The corresponding calculations are so tedious tha
studying Goldstone modes it is more convenient to deal w
the long-wavelength asymptotic expressions derived ear
the expressions are valid forr !1/k, i.e., forkr,kL!1. It is
this region that is so important in the analysis of such mod
Note that no Goldstone modes are present in the modi
problem ~the long-wavelength asymptotic expression~18a!
has no small parameter, with the result that the bound
conditiongm

¸ 50 leads only to the solutionk;1/L!.
In analyzing the Goldstone modes it is convenient

return to the initial problem for the functionf m
¸ . In this range

of values of k, it is only natural to use the approximat
expression~18b! for f m

¸ . The analysis done using this ex
pression shows that Goldstone modes occur only in the
gion where local modes exist. In the case of the Dirich
boundary conditions, the spectrum of the Goldstone mod
which can be found from the conditionf m(kL)50, has the
form
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kL55 2nA11n

n2n

sin~pn/n!

p S R

L D n

, 2n11<m<n,

A 2

ln~L/R!
, m52n11.

~43!

The situation is somewhat more complicated for fr
boundary conditions. In particular, with Neumann bound
conditions, the solution~18b! does not allow for states with
kL!1. In this case, however, we can derive a solution
using a cylinder function of imaginary argument, whic
yields v5Dk2,0 for the case of a ferromagnet orv2,0
for an antiferromagnet. Below we discuss the physical me
ing of negative values ofv andv2.

The following roots of the equation already agree w
the conditionkL;1. They correspond tok2.0 for all types
of boundary conditions. Since fork;1/L andR!L the ratio
r /R is large at the boundary, the value ofkpL is close to the
value of the corresponding zero of the Bessel function,j p

[ j n11,p , whereJn11( j p)50, or to the value of the zero o
the derivative,j p8 , whereJn11( j p8)50 in the case of fixed
and free boundary conditions, respectively:

kpL5 j p1
2n

kL

Jn~ j p!

Jn118 ~ j p!
S R

L D 2n

, ~44a!

kpL5Jp81
2n

kL

~R/L !2n

Jn119 ~ j p8!
H 2n11

kL
Jn~ j p8!2Jn8~ j p8!J . ~44b!

Thus, the spectrum of the natural frequencies of a sm
particle of a magnetic material in an inhomogeneous s
contains anomalously low frequencies, which manifest the
selves in the magnetic resonance of samples containing
particles, say, ferroliquids and granular magnetic materi
Usov and Peschany34 found that the magnetization distribu
tion in a particle in the vortex state is well approximated
the BP soliton. Although our calculations can be appl
only to particles shaped as a thin disk, it is easy to genera
them to the case of a cylinder.

Now we go back to the discussion of the meaning of
resultk2,0 for a Goldstone mode for free boundary con
tions. We examine the most interesting case,m51, corre-
sponding to the translational motion of a BP soliton~below
we will show that the parameters of a Goldstone mode
be directly related to the equations of motion of the solito!.
The parameters of what is known as the translational G
stone mode can be obtained directly from the exact solu
~15!. For kR!1 the solution is

C~x!}r n11S 12
4n~n11!

~kr !2

1

~r /R!2n11D ,

which implies that for fixed boundary conditions,

k25
4n~n11!

L2 S R

L D 2n

. ~45!

For free boundary conditions the solution has the same f
but k2 is negative. Negativek2 is not inconsistent with the
presence of Bessel functions of imaginary argument~modi-
fied Bessel functions! in the solution, since we are studyin
y

y

n-

ll
te
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ch
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d
ze
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this solution in the regionuku&1/L, where the exponentia
increase of the functionI n(z)}exp$z% for z@1 does not
manifest itself.

For ferromagnets and antiferromagnets these results
to significantly different physical pictures of soliton dynam
ics, which means that cases must be analyzed separate

In the case of an antiferromagnet, there are two frequ
cies corresponding to the translational Goldstone mode:

v0
256

4n~n11!c2

L2 S R

L D 2n

. ~46!

Clearly, this frequency has meaning only for fixed bounda
conditions, and negativev2 mean that the system is unstabl
At the same time, for a ferromagnet the valuev5Dk2,0
does not contradict the condition for stability. These resu
can easily be explained on the basis of a simple phys
picture of soliton motion.

Obviously, for an antiferromagnet, which is described
Lorentz-invariant equations, the dynamics of all excitatio
must also be Lorentz-invariant. When the soliton is slowv
!c, this means that in the leading approximation the soli
coordinateX ~for X the origin is at the center of the system!
in the case of an antiferromagnet satisfies an equation of
Newtonian type:

M
]2X

]t2 5Fe , ~47a!

whereFe is the external force acting on the soliton, andM
5E0 /c2 is the effective soliton mass, withE0 the soliton
energy@see Eq.~3!#. Assuming that when the deviation o
the soliton from the equilibrium position at the center of t
system is small we can write

Fe5
aX

Lp , ~47b!

let us compare the value of the frequency obtained by~46!
with the value of v252a/MLp. We find that p52(n
11), and a5716pn2(n11)AR2n for the Dirichlet and
Neumann boundary conditions, respectively. This cor
sponds to the simple picture according to whichFe is the
force of the image acting on the soliton because of the p
ence of a boundary. Since magnetic vortices interact as
charges and a BP soliton withn51 is a vortex dipole, soli-
tons with givenn.1 can be interpreted as 2n-multipoles,
which explains the presence ofp in ~47b! and the sign ofa.

Thus, the properties of the translational Goldstone mo
in an antiferromagnet can easily be understood from the
lowing reasoning. When a soliton is deflected from its eq
librium positionX50, it is driven by the force of the image
For the Dirichlet boundary conditions the force is a restor
one ~repulsion from the boundary! and the motion is stable
If the soliton is attracted to the boundary~the Neumann
boundary conditions!, Eq. ~47! describes the departure of th
soliton from the unstable position of equilibrium atX50.

Allowance for the next values ofkn,i for i .0 can also
be explained on the basis of effective equations forX. Here
the hierarchy of the effective equations of motion contain
only even-order time derivatives manifests itself. The co
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ficients of the higher-order derivatives diverge asL→`.
Mertenset al.33 proposed equations of this type for descr
ing the behavior of interplanar vortices in a ferromagnet.

The situation is quite different for a ferromagnet. T
equation that is commonly used to describe the soliton
namics is

M
]2X

]t2 1GS ez3
]X

]t D5Fe . ~48!

HereFe is the external force, which, obviously, is the sam
as in the case of an antiferromagnet@see Eq.~47b!#, andG is
the gyroscopic term, whose value is determined only by
topology and has been reliably established,3,24,35,36 G
54pnA/D. The data on the effective mass of 2D solito
and vortices are contradictory: in Ref. 37 it is stated that i
ferromagnet with an easy-magnetization plane the value
M is finite but diverges as the anisotropy constantK tends to
zero,M}1/K. In Ref. 38 the result for a vertex isM}1/L, in
Ref. 33 the massM is proportional to lnL, and in Ref. 19M
is finite, but only if the termG3(ez3]3X/]t3) is present in
the effective equations of the form~48!. In Refs. 36 and 39,
the dynamics of a BP soliton is described on the basis of
Hamiltonian formalism with noncanonical Poisson bracke
and the relationship between momentum and velocity
the values of the mass are not discussed.

According to ~45!, the frequency of the translationa
Goldstone mode for a ferromagnet has the form

v056
4n~n11!D

L2 S R

L D 2n

, ~49!

with the ‘‘plus’’ and ‘‘minus’’ corresponding to the Dirichle
and Neumann boundary conditions, respectively. In
present case there is no instability, since Eq.~48! with M
50 ~i.e., only the gyroscopic term is taken into accou!
describes small oscillations of the soliton in the case of
traction to the boundary and in the case of repulsion from
boundary. Allowance for the next translation mode, who
frequency is determined by the formula

v15D~ j /L !2 or v152D~ j 8/L !2 ~50!

in the case of the Dirichlet or Neumann boundary conditio
respectively, makes it possible to draw a conclusion ab
the inertial terms in the equation of motion.

Assuming thatv0!v1 , these roots can easily be com
pared with the two frequencies that arise in the solution
Eq. ~48!. Indeed, in this case we havev0'2a/GLp, which
yields exactly the first value of the frequency of the trans
tional Goldstone mode. For the second value we
v1'2G/M . This value can be compared to~50! if we put

M52
4pnA

D2 S L

j D
2

or M5
4pnA

D2 S L

j 8D
2

, ~51!

respectively, for fixed or free boundary conditions. Thus,
for a vortex, the dynamics with the frequencyv1 is deter-
mined by the entire region to which the magnetic materia
confined. Just as the coefficientG3 in the third-order equa-
tions for vortices in a ferromagnet is nonlocal, so is the
efficient M : it depends on the boundary conditions and
-
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verges asL→`. The divergence ofM is probably a genera
property of 2D magnetic materials with a gapless dispers
law.

We also note that the finite value of the soliton ma
M}1/K, where K is the anisotropy constant, obtained
Ref. 37 for a magnetic material with an easy-magnetizati
axis does not contradict the above dependenceM}L2 for an
isotropic ferromagnet. Indeed, in a magnetic material with
easy-magnetization axis, the gap in the magnon spectru
finite and a characteristic linear scaleD05AA/K appears,
from which we can obtain the same result as in Ref. 37,M
}D0

2}1/K, if L is replaced byD0 in ~51!.

7. DENSITY OF MAGNON STATES OF A 2D ISOTROPIC
MAGNETIC MATERIAL IN THE PRESENCE OF A SOLITON

A 2D magnetic material can be described thermod
namically with allowance for soliton excitations via a gene
alization of soliton phenomenology developed by Krumha
and Schrieffer1 and Currieet al.2 for 1D systems to the two-
dimensional case. According to their approach, at low te
peratures the state of a 1D magnetic material can be
scribed in terms of almost free excitations, magnons a
kinks. The main effect of their interactions manifests itself
the form of an asymptotic shift of the phase of a magn
scattered by a kink. This causes the total number of mag
states from the continuous spectrum to change~in compari-
son to the case of a magnetic material without a soliton! by
DN5*

2k0

k0 r(k)dk, where r(k)5(1/2p)dd(k)/dk is the

density of states. This quantity is a negative integer, i.e.,
number of magnon states in the presence of a soliton
creases byDN, which is obvious, since a fraction of th
magnon states are now described as the collective mode
the kink dynamics. The variation of the density of magn
states due to the addition of a kink to the system cause
change in the thermodynamic characteristics of the mag
gas, in particular, the free energy of the magnons. In
phenomenological approach, this change in the free ene
of magnons is interpreted as a change in the kink energy
to kink–magnon interaction.

Let us use all these ideas in the 2D case. Clearly, in a
magnetic material the total number of states is proportio
to LxLy . A free magnon corresponds to the expansion~16!
in the cylinder harmonicsJm(kr)exp$imx% in which the an-
gular variable has already been quantized, so that only
radial partJ(kr) needs to be quantized. In a circular geom
etry with radiusL, the simplest quantization condition~41!
has the formJm(kL)50, from which it follows thatknL
5 j m,n . In the region of interest to us,n@1, the zeros of the
Bessel functions,j m,n , are approximately equal topn. From
this fact we can formally determine the admissible values
the wave number by the same expression as in the 1D c
However, one must bear in mind that such an approxima
for j m,n is valid only whenm is not very large. For modes
with umu@1 the first zero j m,1'umu. Hence in a system
whose sizeL is finite there is a restriction on the admissib
numbers of the modes, namely,umu<L. Allowing for this
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fact, we arrive at a rule for summing over the magnon sta
for a 2D magnetic material without a soliton:

(
k,m

5
L

p E
0

k0
dk (

m52kL

kL

.

Naturally, for the total number of magnon states we arrive
the usual formulaN2D5L2k0

2/p.
Allowance for the soliton–magnon interaction leads to

shift in the magnon phase and changes, just at its does in
systems, the expression for the density of states~in our case,
partial states for magnons with a givenm) rm(k)
5(1/p)ddm(k)/dk. The total density of magnon states
found by summing overm:

R~k!5 (
m52kL

kL

rm~k!5
1

p (
m52kL

kL
ddm~k!

dk
. ~52!

Note that the density of statesR(k) in the long-
wavelength region has an~integrable! divergence caused b
the mode withm50, for which, according to~31!, r0(k)
'(2k)21ln22(kR) diverges in the limitkR→0 @cf. ~36!#. It
is also obvious that at low temperatures,T!T* , whereT*
5\D/R2 for ferromagnets andT* 5\c/R for antiferromag-
nets, it is enough to limit oneself to the long-waveleng
approximation. In particular, in the adopted approximatio
the density of energy states can be written

g~E!}
1

ER ln2~E/T* !
. ~53!

In principle, the density of states for an arbitraryk can
be calculated numerically. Here the presence of a pole in
amplitude of scattering of magnons with a givenm means
that the total phase changes by1p or by 2p ask changes
from zero to infinity, with the modes withm.1 andm,1
providing contributions toR(k) that are opposite in sign
Thus, for values ofk that are not small the total number o
magnon states does not decrease~as it does in the 1D case!;
rather, the magnon modes are redistributed among the s
with different values ofm. In general the signs in the serie
~52! are found to alternate. In thermodynamic calculatio
the temperature acts as a sort of regularizing factor in
summation process. The main contribution of the vario
modes, in particular, the change of the number of par
states by one unit, manifests itself in the order in which
poleskp appear in the scattering amplitude ask increases.
Sincekp increases withm ~see Sec. 5!, the contributions of
the modes with an ever increasingm manifest themselves
successively as the temperature rises.

8. CONCLUSION

Thus, we have constructed the soliton–magnon sca
ing matrix for the simplest but physically interesting 2
model of an isotropic magnetic material. The analysis
been carried out both for the Landau–Lifshitz equation, u
to describe ferromagnets, and for the Lorentz-invari
s-model, used in field theory and to describe antiferrom
nets. We are the first to obtain an exact solution of the s
s

t

D
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e

tes

s
is
s
l

e

r-

s
d
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-
t-

tering problem for the partial mode with the azimuthal qua
tum numberm51. Note that such solutions are not know
for all one-dimensional problems.

What is important is that the possibility of such an i
vestigation is not related to exact integrability of the pro
lem. Indeed, the model of an isotropic magnetic materia
exactly integrable in the static case,n5n(x,y), but nothing
is known of its integrability in the casen5n(x,y,t).

We have calculated the scattering amplitude formÞ1
~analytically in the long-wavelength approximationkR!1
and for large values ofkR and also numerically for arbitrary
values ofkR!. We have found that the partial scattering am
plitudes have poles~the scattering phases pass throughp/2!
at certain valuesk5kp , with kp increasing withm approxi-
mately by a linear law. This is enough to calculate the m
non density of states in the presence of a soliton.

We have used our results to describe various phys
properties of solitons and local magnon modes. In particu
we have calculated the frequencies of the magnon mode
a magnetic material of finite dimensions. What we ha
found is that in the small particles of ferromagnets conta
ing a soliton~particles in what is known as the vortex stat
whose properties are being widely discussed at present! natu-
ral modes arise with anomalously low frequencies. The d
on the frequencies of the local modes have been use
derive the equations of motion of a soliton in a ferromagn
We have calculated the magnon density of states in the p
ence of a soliton, which makes it possible to construc
soliton phenomenology for 2D magnetic materials that
lows for the soliton–magnon interaction.

There are other possible applications of our results wo
noting. In some of the papers~see, e.g., the review article i
Ref. 7! devoted to the study of ordered 1D media includi
magnetic materials, several nonequilibrium characteristic
a soliton gas, primarily, the coefficients of diffusion and v
cosity, were investigated. The theories developed by the
searchers were based on using the exact wave function
magnons against the background of a soliton. The asymp
expressions for the wave function for smallk derived in the
present paper have made it possible to study the irrevers
process for the 2D gas of elementary excitations, includ
solitons and magnons, in isotropic magnetic materials at
temperatures.

The results concerning thes-model can easily be ex
tended to the Euclidean case and can be used to describ
quantum properties of spin chains with antiferromagnetic
teraction. The properties of such systems are determine
the instantons of the Euclidean version of the nonlo
s-model. Also widely discussed are instantons with a str
ture of the BP soliton~see Ref. 40! and what is known as
merons, which have a half-integer topological charge~see
Ref. 41!. To calculate the pre-exponential factors in the c
responding transition amplitudes~the fluctuation determi-
nant!, we must know the complete set of eigenstates aga
the instanton background. Most important are zero-freque
modes~for more details see Ref. 42!. Hence our results, es
pecially concerning the nontrivial local zero-frequen
modes, may prove to be important in developing the inst
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ton approach in the quantum theory of 1D magnetic mat
als.
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1!If this fact is not taken into account, the amplitude for scattering of

translational mode by a BP soliton turns out to be finite,32,22 whereas ac-
cording to~15! it must be zero.
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