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Kink propagation and trapping in a two-dimensional curved Josephson junction
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Sine-Gordon kink propagation in a curved planar waveguide is considered. The waveguide consists of two
rectangular regions joined by a bent section of constant curvature. Transverse homogeneous and inhomoge-
neous Neumann boundary conditions are used. The latter models an energy-providing mechanism for Joseph-
son junctions of overlap type. A collective variable approach based on the kink position and the kink width
depending on the transversal coordinate is developed. The latter allows to take into account both longitudinal
and centrifugal forces which act on the nonlinear excitation moving in a region with finite curvature and to
obtain a qualitatively good agreement with the numerical simulations. The region with finite curvature acts as
a potential barrier whose height and width depend on the radius of curvature of the waveguide. The kink
transmission, reflection, and trapping are investigated. The kink may be captured when a driving force, pro-
vided by a magnetic field, is applied to the kink.
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[. INTRODUCTION The aim of this paper is to study the motion of fluxons
moving in a two-dimensional finite domain. Specifically we

Recent advances in microstructuring technology havdreat a planar curved Josephson junction whose width is con-
made it possible to fabricate various low-dimensional sysstant and is much smaller than its entire length. We consider
tems with complicated geometry. Examples are photoniénhomogeneous Neumann boundary conditions on the trans-
crystals with embedded defect structures such as microcaWerse boundaries of the domain. Using a simple collective
ties, waveguides, and waveguide behdsrrow construc- var[able analysis based on the fluxon pos_ition we show that a
tions (quantum dots and channefermed at semiconductor region of nonzero curvature in a waveguide induces a poten-
heterostructure%magnetic nanodisksl dOtS, and rirf‘g’batcl tial barrier for the wave. This is different from the case of

It is well known that the wave equation subject to Dirich- transverse Dirichlet boundary conditions where studies on
let boundary conditions has bound states in straight channetge (linean Schralinger equation show the existence of a
of variable widtif and in curved channels of constant crosslocalized mode which will trap waves in the curved region.
section® Spectral and transport characteristics of quantumi he paper is organized as follows. Section Il describes the
electron channefsand waveguides in photonic crydtare ~ model. In Sec. Ill a collective coordinate approach is devel-

essentially modified by the existence of segments with finit®Ped. The results of numerical simulations and their com-
curvature. parison with the results of the collective coordinate approach

Unt" recenﬂy there have been a few theoretica' and nu.a-re discussed in Sec. IV. Fina”y, Sec. V contains our conclu-
merical studies of the effect of curvature on properties ofSIONS.
nonlinear excitations. Nonlinear whispering gallery modes
for a nonlinear Maxwell equation in a microdisk were inves- Il. MODEL AND EQUATIONS OF MOTION
tigated in Ref. 9, the excitation of whispering-gallery-type
electromagnetic modes by a moving fluxon in an annular We consider a two-dimensional Josephson junctfon
Josephson junction was found in Ref. 10. The fluxon dynamconstructed of two straight segments joined by a bent section
ics in exponentially tapered Josephson flux-flow oscillatorsee Fig. 1 The fluxon dynamics can be described by the
was studied in Ref. 11. Nonlinear localized modes in two-two-dimensional sine-GordofSG) equation
dimensional photonic crystal waveguides were investigated
in Ref. 12. A curved chain of nonlinear oscillators was con- P Pp PP i
sidered in Ref. 13 and it was shown that the interplay of T T 7T oo Ta g tsing=0, (1)
curvature and nonlinearity leads to a symmetry breaking at X ay
when an asymmetric stationary state becomes energeticall . . - -
more favorable than a symmetric stationary state. Propag%here“ is the damping coefficient. The boundary conditions

tion of Bose-Einstein condensates in magnetic waveguide r Eq. (1) are ol_ata|.ned from the relatlbﬁlelbetween the
was found quite recently in Ref. 14. Single-mode propaga-eﬁecwe magnetlc. field and the phase differencé by
tion was observed along homogeneous segments of tHgeans of the relation
waveguide while geometric deformations of the microfabri-

cated wires lead to strong transverse excitations. H= —EXVQS, (2
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whereZ is the normalized total bias through the junction and
€. is the normalized length of the boundafy . Assuming
that €.>w, we will neglect the difference between the
length of the inner and outer boundaries and reptac®y ¢
in Eq. (6).

In the curvilinear §,u) coordinates the sG equatidf)
takes the form

Pp 1 ao(laop\ 1o/ d¢ ap
FIG. 1. Curved Josephson junction structure. %2 goaslgas| gau 950 +aE+sm(¢)—O,

. )

wherez is the unit vector normal to the junctions plane, and ) )
have the form whereg= \gs0,,=1—ux(s) is the Jacobian of the trans-

formation from the Cartesian coordinates to tiseuj coor-
ﬁ'V¢| m:ﬁ' (2><ﬁ)|m. 3) dinates, with the boundary conditio®) and

Heren is the outward normal to the boundary of the junction ds¢p—0 for s— ke ®

region ).
In this paperQ) has constant widthv (see Fig. 21" The
center curve in the bent and straight section$)ofdenoted

C, is given byr=p(s)=[a(s),b(s)], wheres is the arc 1
length of C. Note the normalization||p’(s)|=1, where R
0

Let C be straight on both ends<s; ands>s,, and let it
have a finite constant curvature inside this interval

when s;<s<s,

prime denotes derivative with respectgoThe points inQ) K(s)= | h ©
are labeled in accordance with the parametrization elsewnere.
Fzﬁ(s)+uﬁ(s), (4) The corresponding expression férin the bent region is
0(s)=(7/2)(s—s1)/(S2—51).
where the coordinate measures the signed distance frém We will consider the scattering and trapping of kinks as

n(s)=[—b’(s),a’(s)] denotes the unit normal & To sat- they pass through the bending region.

isfy the normalization assumption we choos# (s)

=cogd(s)], b'(s)=siné(s)]. The parametrizatior(4) im- Ill. A COLLECTIVE COORDINATE APPROACH
plies that §,u) are orthogonal coordinates and the compo-

nents of the metric tensor are We will use the method of collective coordinates to gain

understanding of how the bending affects the kink dynamics.
—r1_ 2 _ It is not convenient to apply the collective coordinate ap-
Oss=[1ur(9) % gu=1, © proach in the case of inhomogeneous von Neumann bound-
wherek(s)=(a")?+ (b”)? is the curvature of the reference ary conditions. We use a trick similar to the one which was
line. In this case the curvature of the reference cdhtakes proposed in Ref. 18 for the case of rectangular Josephson
the formx(s)= 6’(s). The curveC_ (C..) which is given by junctions of overlap geometry. To this end we introduce an
Eq. (4) with u= —w/2 (u=w/2) represents the inner bound- auxiliary function®,(u) which satisfies the equation
ary (outer boundaryof the junction.

In the case when the external magnetic field is caused by d*®, Csind.=0 10
a current passing through the junction, then inhomogeneous du? SIN®o=1, (10
Neumann boundary conditions are induced for the overlap
geometry and they may be written in the form of with the boundary condition

u
S FIG. 2. Change from Cartesian to curvilinear
> w2 coordinates.
e
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dod, T where the function#(u,t) and S(u,t) determine the width
- =57 (1) and the position, respectively, of the kink. From Etg) we
du | _ 2¢ e
u==w/2 get the boundary conditions
Now, a solution of the form
B S|
B(s,U,1)=Do(u) + (s,u,t) (12) U arEm =0. (D)
u=*w/2 u=*w/2

reduces Eqs6), (7), and(8) to
To take explicitly into account the boundary conditions

Py Lao(laoy\ 1o/ ap (21) we expand the position of the wave fra$tu,t) and the
~ 2 gas\gas gaul9au +a—-+sin(y+ @) width B(u,t) in Fourier series,
_ 1 99 dd, ” 2nmu
—Slnq)o—aﬁwzo, (13 S(U,t):nzo [SZn(t)CO{ W }
with the homogeneous von Neumann boundary conditions (2n+1)7u
+Son4a(t)sin ————— J (22)
Iy
— =0 (14)
Jau u==*=w/2 o0
nmu
for the transversal coordinateand the boundary conditions Blut)=2> [an(t)COS{
for the arclength coordinateidentical to Eq.(8), n=0
1(2n+1)7u
dsp—0  for s—*oo, (15 + By 1 (t)Sin ———— . (23

In the absence of dampingr&0) the sG equatiorfld)

may be obtained by variation of the Lagrange function Here the functior5y(t) describes the motion of the flat front

while the functionsS,(t) (n#0) characterize the curvature
w (w2 1 of the front. The function8,(t) give the dependence of the
L{¢}=f f 5 Lduds (16)  width on time. Inserting Eqg20), (22), and (23) into Egs.
T w2 (16)—(19) and carrying out the integrations oveandu we
where the Lagrangian density can be represented as the Obtain an effective Lagrangian in the fortgee Appendix A

following sum: for details
L=Lo+ Ly 17) L=Lo+Lg, (24)

The first term represents the density in the case withoulgeing
damping,
L [L(wE 2 (awE e b=V, (29

712\ %t) Toglos) “2lau) TIETCOSIIG here

(18 )
while the second is T=4| S+ %BZ> (26)
Lg=|(1—cosdy)(1—cosy)—sinPgsiny is the effective kinetic energy, and
—Sgsm‘bﬁaﬁm g, (19 V:4{(24w2+§ B2+agU— —n A F

and describes driving effects in the fluxon dynamics.

The starting point of the collective coordinate method is
to choose a localized self-similar trial function which is close
to the exact solution in the absence of bending and contains
a number of parameters which become time dependent dus the effective potential energy. Finally
to the perturbations. In our case, the trial function may be

+

2w
E‘Fal u|B (27)

chosen as Lg=—8%S. (28)
B s—sS(uyt) In Egs. (24)-(28), S(t)=Sy(t), B(t)=B(t), and the fol-
(s,u,t)=4 arctan ex(y B(ut) ) (20 lowing expressions have been used:
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B sinh(2a)
U= cosh2a)+cosh2S)’

a+S a—S B
F= + , (29
2cosif(S+a) 2cosh(S—a)
1. RI 2R+w >
0= w2R—w’
_RyweR - x [7R q 30 FIG. 3. Solution to Eq(32) with V given by Eq.(27) plotted in
al_w 7W/2R1_X5|n w x| ax (30) (S,B) plane for w=4R=45s,=—s,=1.
3 4T Thus in the collective coordinate approach the kink dy-
y= - _d’ =7 (31) namics in a curved waveguide is equivalent to the dynamics
2w auf,_ ., W of a particle moving in the two-dimensional potentéllt is
_ _ necessary to stress that considering the soliton wit{tht)
Here 2a=s,—s, is the length of the bent region. as a variational parameter in the trial functi@®) is crucial.
~ By deriving the Lagrange functio(24)—(28) the follow-  This variational parameter takes into account the centrifugal
ing approximations were used. force which acts on the kink in the bending region. The

(1) In the expansior(22) only the harmonics with=0  width of the soliton in its stationary staR, is given by the
are taken into account. This means that we neglected thgquation
front curvaturgwe checked the accuracy of this approxima-

tion and found that in the case when the width of the junction oV
is not too large W= 2r) the discarded terms do not contrib- 9B =0, (33
ute significantly to the kink dynamigs
(2) In the expansion(23) we substitute B(u,t)=1  and its value is
+ B(t)sin(wu/w), which means that we neglected the zeroth
harmonics and puBy(t)=1 (remember that in the case of [2w/(7?R)—a,]F +[2w/(m°R)+a,;]U
the straight waveguidB,= \1—S%), and discarded the har- st 1+ 7% (12w?) - 9

monics withn=1. As expected we found this approximation
to be correct for slow moving kinksS<1) and moderately

wide waveguidesW<2). J- v ,

(3) Since we are interested in slow moving kinks ( presence (_)f the seponq variational parameter affects the kink

) L dynamics is given in Figs. 4 and 5. The latter represents the

<1) we neglected the coupling terms of the ty§®. ~ two-dimensional behavior of the potential function along the

(4) Taking into account that we are interested here in thgyathB=By,. The figures show clearly that the potential pro-
weak driving case¢<1) only the linear driving terms were fjle which corresponds to the case of the one-parametric trial
considered. We also neglected the difference between thgnction (B=0) represents a simple barrier. On the other

When the results of more sophisticated approach based Qi potential profile with two humps separated by a valley
the four variational paramete, S,, By, andB; (see Ap-  petween them. This potential well is shallow whess R and
pendix A are compared with that of Eq$25)—(27), it is
apparent that the simple approach catches all essential fea-
tures of the kink dynamics.

This quantity is finite inside the bending region and rapidly
vanishes outside of {isee Fig. 3. An illustration of how the

IV. NUMERICAL AND ANALYTICAL RESULTS
A. Case without driving and damping

From the Lagrangiar25)—(27) we obtain the equations
of motion in the form

85+ N 0
S
w? Vv ; ; ;
A SR Y (32) FIG. 4. The effective potential/ given by Eq.(27) for an
3 0B equivalent mechanical system with=6R=45s,=—s;= 1.
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30;
\Y
20}
10}
FIG. 5. Effective potential projection along the pa=0 for
w=4R=4s,=—s;= (doted ling and along the patB =B, for /)
w=6R=4s,=—s,= 7 (continuous ling and for w=4R=45s, M
= —s; =1 (dashed ling 0 .
0 10 20 30

becomes deep and well pronounced whenr 2R. However,
it is worth noting that the case~2R is beyond the accu-
racy of our approximations as the conditipi—1|<1 is -

violated whenw is close to R.

The numerical simulations of Eql) have been con-
ducted in the Cartesian coordinatesy() using the finite
element program packagemLAB.X® On the triangular ele-
ments we have used Lagrange-linear and Lagrange-quadratic  20¢
basis functions to expand the solution numerically. The ex-
pansion coefficients are time dependent and are governed by
a system of ordinary differential equatiof®DE’s) derived
from a variational formulation of Eq(l). This system is 10l
automatically set up byemLAB and have been solved nu-
merically employing the Matlab ordinary differential equa-
tion solvers odel5s and ode45. The odel5s is a multistep
method solver of variable order designed for stiff systems
and ode45 is an explicit Runge-Kutta method of order four 0 0 10
and five. Specifying relative tolerances of 8-10 2 gave
satisfactory accurate numerical solutions with about 3800 el-
ements in the domain at Fig. 2. We found that the nonstiff
solver ode45 is faster than odel5s and sufficiently efficient  3q.
and accurate for the sine-Gordon equati@h Typical run
times ae 9 h with ode45 on a SUN Fire 3800, simulating
from t=0 to t=200 with about 3800 elements and relative
tolerance 10%, absolute tolerance 10.

Initially the kink is located in the straight part of the do-
main far away from the domain edge and from the curved
region to avoid interference with the boundaries. It is
launched into the strip with different initial velocities. So as
initial conditions for our numerical simulations we choose 10}

the function
1 41
¢(s,u,0)=4 arctan ex , (35 0

J1-02 0 10 20 30
FIG. 6. The wave is reflected f®R=4, w=4, andv,=0.17,
and d;¢(s,u,0)= —vodsép(s,u,0) which satisfies the sG while v,,~0.19.
equation in the straight region in the absence of driving
=0. Here X, is the initial position, andv, is the initial
velocity. For the system of equatiori82), satisfied by the
collective coordinates, the initial conditions are

30

20+

i

Let us consider the kink dynamics in the right-angle
waveguide withw=R=4, s,—s;=27. In terms of the col-
lective coordinate approach this choice of parameters corre-
' . sponds to a rather shallow interhump welke Fig. 5 dashed
S(0)=X,,S(0)=v, and B(0)=B(0)=0. (36) line). Two typical examples of the kink evolution for two
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30;

20}

10}

/ ’ -10 0 10
1l :
0 ; .
L 19 20 =0 FIG. 8. Phase portrait,S) usingw=4R=4 for the simula-

tions (continuous ling and the collective variable equatiofi37)

55 (dashed ling The critical velocity for transmission is.,~0.18.
=] in the curved stripe are given in the phase porffaint
position S(t), front velocity S] presented in Fig. 8. In the

- same figure the results of the collective coordinate approach

based on Eq932) are also presented. It is observed that the
collective coordinate approach gives a qualitatively good
agreement with the results of the numerical simulations. As
the figure shows, the initial velocity of the soliton determines
10} completely its trajectory. When the initial velocity is lower
than some critical value., the trajectories do not penetrate
into the bending region. On the other hand, for higher initial
velocities,vy>v,,, the kink passes the curved region and
propagates all the way through the junction. In this regard,
the motion of sG kinks in two-dimensional curved strips is
similar to the propagation of fluxons in Josephson lines with
impurities? It is also worth noting that the approach based
on the two variational parametesandB agrees quantitively
with the results of the numerical simulations for the critical
velocity v, while the approach based on a single variational
parameter(the kink position exaggerates the height of the
effective potential in the bent region. For example, when
=R=4 the value of the critical velocity obtained from simu-
lations is 0.18v,,=<0.19, while the variational approach
assuming a modulation of the width gives,~0.19. The
simple variational approach based only on the kink position
givesv,~0.3.

For a straight driven damped sine-Gordon equation the
excitation switches to a spatially uniform state for high-bias
current at a critical velocit? It is an interesting question
whether a similar limiting velocity exists in the curved
geometry.

30

20+

0 10 20 30
:OF:ILg Vzr']";—:z;/\(l)é\l/; is transmitted foR=4, w=4, and v B. Case with driving and damping: kink capture
We consider the motion of fluxons in the presence of
different initial velocities are presented in Figs. 6 and 7. Indamping and driving. The energy-providing mechanism here
the first one, corresponding to a small initial velocity, theis modeled by the inhomogeneous von Neumann boundary
kink is seen to be reflected from the bending region while inconditions (6). The equivalence of bending to a potential
the second, for large enough initial velocity, the kink passedarrier, demonstrated above, suggests that in a waveguide
the bent region leaving behind some small radiation. kinks can be captured nearby the bending by applying an
The results of a more systematic study of the front propaexternal driving. Theg coefficient in the wave equatio(T)
gation[i.e., the position of the points for the levél(s,u,t) for the s variable is similar to a surface inductance in the
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\Y > S
-10 5 10
-0.5
S 0.05 0.1
FIG. 9. Effective potentiaV/(S) as a function of the kink posi- b

tions in the precence of a driving force obtained from Eg83) and
(37) in the absence of damping=0.03 forw=3,R=2. Kink trap-
ping is possible as shown by the local minimum of this potential for
S<0.

FIG. 11. Position of the kink trap as a function of the current
density for three different waveguide widthe=3, 4, and 5.R
=4.

. . V. CONCLUSIONS
Josephson context so that one expects kink trapping at the

interface in the presence of a current agRef. 23. Indeed, We consider nonlinear wave propagation in a curved pla-
in the presence of driving and damping the equations of monar waveguide using as a model kink solutions for the sine-
tion for the collective coordinatéSandB are(see Appendix  Gordon equation. The waveguide consists of two rectangular
B for detail9 regions joined by a bent section of constant curvature. Trans-
verse homogeneous and inhomogeneous Neumann boundary
conditions are used. The latter models an energy-providing
mechanism for Josephson junctions of overlap type. We de-
velop a collective variable approach based on the kink posi-
tion and the kink width depending on the transversal coordi-
nate. It allows us to take into account both longitudinal and
3 9V . centrifugal forces, which act on the nonlinear excitation
B+ — g taB=0. (37 moving in a region with finite curvature and to obtain a
qualitatively good agreement with the results of the numeri-
cal simulations.

The curved region might manifest itself as a two-hump

stable sink-tvne fixed point which corresponds to a tra ing£otential barrier with interbarrier space acting as a potential
ype P . P trapp alley. The height of the barriers and depth of the interbarrier
of fluxon (see Fig. 9. The trap is always located outside the

..~ valley depend on the ratio between the width of the wave-
%uidew and its radius of curvaturB. The appearance of the
double barrier structures is due to the two-dimensional char-
acter of the kink evolution in curved waveguides. When
10-13. <R the well is shallow and the bendi i
The two-dimensional projections of the phase portrait_ the well is shallow and the bending region acts as a
potential barrier.

onto the §,5) plane are shown in Fig. 12. In full agreement kink capture may occur when a driving force is applied to
with the results of the collective coordinate approach based

on Egs.(37), as the width of the junction increases, the trap-

S+ LNV, S+y=0
ggs TV
An analysis shows that fdry| <y, Egs.(37) possess a

force y increases. The critical value of the driving forgg,
decreases when the width of the junction decreé&sas Figs.

ping occurs closer to the bent region of the junction.
0.1
0.2
0.05 :
S
b 01 0
-0.05
-6 -4 -2
0 1 2 3 4 S
w

FIG. 12. Numerical(continuous ling and analytical(dashed

FIG. 10. Phase diagram f&®=2. The kink-trapping region is line) (S,S) phase portrait fov=3, R=2, y=0.03, anda=0.03.
shown in gray. Trapping occurs as<—a= — 7/2.
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the kink. In Josephson junctions this driving force is pro-is due to the presence of the bending regi®nin the junc-
vided by a magnetic field via the inhomogeneous von Neution. Here the notation
mann boundary conditions. The kink trapping occurs only in 1 (asis
L - ; a
a finite interval of the driving parameter when this force __f x"sechxdx n=012 (Ad)
—(a+8)/B

drives the kink against the repulsion caused by the barrier U 2

created in the bent section. Beyond this interval the kink is

transmitted along the waveguide. is introduced. The second perturbation term also consists of
This study shows that by changing the geometry oftWO Parts

waveguides one can efficiently control the dynamics of non- Lo=L' +L" (A5)

linear excitations. Depending on the width of the waveguide dr > =dr

and its curvature the bending regions may act either as pdrhe functional

tential barriers or as traps for nonlinear excitations. This fea-

ture could be applied to electronic devices for storing binary 1 (w2

data. dar= % J

s dzq)o
2 gu?

S(u,t)—(1—cosdy)B(u,t) ; d

w/2

(A6)
describes the driving effects in the straight junction while

’6 sinh(a/B)
arcta coshS/B)
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(A7)

is due to the combined action of driving force and curvature.
APPENDIX A To take explicitly into account the bour]dary cond.itions
(21) we expand the frontS(u,t) and the widthB(u,t) in
Inserting Eq.(20) into the Lagrange function€l6)—(19) Fourier series
and carrying out the integration over the arclengthwe

obtain an effective Lagrangian for the dynamics of the front - 2nmu
S(u,t) and the widthB(u,t) in the form S(u,t)= 20 cog —
L{¢}:L{BIS}ZLS+Lb+Ldr= (Al) . (n+1)’7TU
+Spna(t)sinf ————| 1,
where
2 2 - 2nmu
4 _fw’z 98\% m[[9B)*_[B)? Blun=, [an(t)cos( )
w/2 au 12]\ at Em n=0 w
1 [(n+1)wu
_Bz—l]gdu (A2) + By 1(t)sin —w [ (A9)
is the effective Lagrange function for the straight junction. The results of the numerical simulations show that the
The first perturbation term curvature of the front is small and therefore we need only

take into account the first few terms in the expangg). In

w2 JS\ 2 R this appendix, to check the accuracy of the approximations
b= _f | =B+ o—|Up used in the main text we extend the set of variational param-
wi2R au R—u ; _ _ _
eters and derive the collective coordinate Lagrangian assum-
. dSdB 9SS IB . oB\2 [ oB\? 1d ing that
7t ot auau |\ at) T\aa) Y B e
(A3) S(u,t)=SO(t)+Sl(t)S|n(W),
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B(u,t)=Bq(t)+ Bl(t)sin( WWU) (A10)

First, we consider the case without driving=0) and with-

out damping. Inserting Eq$A10) into the LagrangiafAl)—
(A3) and carrying out the integrations over the transversal
variable, we obtain that the kink dynamics in the case with-
out driving and damping is described by the effective La-
grangian function

4 2 1. 2
2 2 2 2
[SO+ —S B +§Bl>_ﬁsl_80_l
= P s g2 2V [25,S,U
282\ 7 1aw?) b oaRTTOHC
.. .. .. dUq
+(SoBl+SlBo)U1+ZBoBluz]_aoUo_aﬁlE
B,[ U, ) 2w {s 5 U
J— a JE— —— —
lBO 0 ﬁBO 0 1 0(980 S
+B, BO_O+Uo } ’ (A11) FIG. 13. Comparison of the two-dimensional projections onto
dByg (S,S) plane(upper paneland onto §,B) plane(lower panel for

the simple collective coordinate approad(t)=Sy(t) and B(t)
where =B4(t) (full curve) and for the extended approach given by Eq.
(A10) (dotted curvg w=4R=4.
Un=U|s,=s,~0, N=0,1,2. (A12)

J fw/z (a[, (w AL dp, AL A
We solved numerically the set of Euler-Lagrange equa- —W P 08 APy 9S &4/15 39S

tions corresponding to the Lagrangighll). The results are

w/2

presented in Fig. 13 together with the corresponding results n 9L Iy dsdu
obtained in the framework of the simple approach used in the APy IS
Sec. Ill. A good agreement of both approaches is observed.
Therefore, to gain a qualitative understanding of the kink :J J""’z (__iﬁ_iﬁ Y
dynamics it is sufficient to use the simple collective coordi- —W ) _wpl\ Y du I, IS dips S
nate approach based on two variational parameS8§t3 Y
=Sy(t) andB(t)=B,(t). oL JP
+ P dsdu (B3)
APPENDIX B

d JL wi2 9L Iy
In this appendix we derive a collective coordinate equa- gt gs, ffoJ' wid Ed sdu
tion of motion for the case with driving and damping. In our
derivation we will follow the method given in Ref. 21 for the w2 9L dip
case of the damped nonlinear Sdfirmer equation. The ffxwf w2l gdeU
equation of motion(13) can be written in the form
j fW/z (aw d oc +&£ w//t)d g
aL 9 L d L 9 IL — agi, (B1) oW w2\ 3S dt 9 | ag 9S u

It APy IS dhs U i,

(B4)

where the Lagrange density is given by Eqgs.(17)—( Subtracting now Eq(B4) from Eg. (B3) and invoking Eq.
Assuming that the solution of the equation may be ertten a$B1), we get

s—S(b) L d dL wi2 ,w Y
=4arctan ex - , B2 _ -
v %1+ B(t)sin( wu/w) (B2) S dt_&S[ ﬂcwj wadt &Sgdsdu (B5)
invoking Eg.(16) and integrating by parts we get In the same way one can obtain the equationBor
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gL d oL F 1fw/2a¢a¢ dsd 36 gL d o = 5 58
B dtoB, *) .wl ..o gg99sdY (BO) B dtas, 3 “Br (B8)
Introducing Eq.(B1) into Egs.(B5)—(B6) and carrying where we neglected the difference of the damping effects in
out the integrations with respect soandu we get the bent and in the straight regions of the channel due to
oL doaL smallness of the damping coefficient€1). The nonlinear
— - ——=8a$S, (B7) terms in the right-hand sides of Ed85) and(B6) were also
dS dtaS neglected.
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