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Noise-induced switching between vortex states with different polarization
in classical two-dimensional easy-plane magnets
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In the two-dimensional anisotropic classical Heisenberg model Withsymmetry there are nonplanar
vortices which exhibit a localized structure of theomponents of the spins around the vortex center. We study
how thermal noise induces a transition of this structure from one polarization to the opposite one. We describe
the vortex core by a discrete Hamiltonian and consider a stationary solution of the Fokker-Planck equation. We
find a bimodal distribution function and calculate the transition rate using Langer’s instanton the68y.

The result is compared with Langevin dynamics simulations for the full many-spin model.
[S0163-1829)09909-9

I. INTRODUCTION The productgp of the topological charges determines the
dynamics because the vortices are subject to a “gyrocou-

There are several classes of quasi@Do-dimensional  pling force” GXxV, which is formally equivalent to the Lor-
magnetic materials for which the ratio of inter- to intraplaneentz force?®2! Vv is the velocity of the vortex center, but
magnetic coupling constants is typically T0-10% (1) instead of an external magnetic field we have here an intrin-
Layered magnets,*  like K,CuR,, Rb,CrCl,, sic quantity, produced by the vortex itself and carried along
(CH3NH3),CuCl,, and BaM,(XO, with M=Co,Ni, ... with it: The “gyrovector” G=2mqpe, which is orthogonal
and X=As,P,...; (2) CoCl, graphite intercalation to thexy plane. The formula foG was derived in the con-
compounds; (3) magnetic lipid layers, like manganese tinuum limit and, strictly speakingG is conserved only in
stearaté. Many of these materials can be described by thethis limit. Nevertheless, spin dynamics simulations for 1 or 2
classical 2D Heisenberg model wilkY or “easy-plane”  vortices showed that the direction & (or the sign ofp,

symmetry(Sec. I). because is always conservgddoes not change during the
In this model vortices play the decisive role: they aresimulation?223

responsible for a topological phase transifibnat the However, we know so far three exceptions, i.e., situations

Kosterlitz-Thouless temperatufg and, above ., for “cen-  in which the out-of-plane vortex structure can suddenly

tral peaks” in the dynamic form factors for the spin correla- make a transition from one polarization to the opposite one.
tions. The central peaks were observed in inelastic neutroAs the direction ofG is reversed, this has a drastic effect on
scattering experimerts*® and in combined Monte Carlo— the dynamics: The direction of the gyrocoupling force is also
spin dynamics simulation’$=*° The observed central peaks reversed, which means that the direction of the vortex mo-
agree qualitatively, partially even quantitatively, with the tion is reversed, too. The three transition mechanisms are as
central peaks which were obtained by a vortex-gagollows.
approach#-1° (1) Interaction with spin wavesThe easiest way to see
There are two types of static vortex solutions whose structhis is to use “dirty” initial conditions for the spin dynamics
ture and energy differ, depending on the anisotropy of thesimulation®* e.g., a structure which is not a good approxi-
Heisenberg exchange interactifhFor strong anisotropy mation to the 1-vortex solutiofthis solution can be obtained
(i.e., if the anisotropy parametét exceeds a threshold,) numerically by an iteration proceddfe Then many spin
only planar vortices are stable for which all spins are lying inwaves are radiated at the beginning of the simulation, while
the easy planéxy plang. For weak anisotropy (€ 6<4.) the approximate vortex structure adapts to the lattice and
only nonplanar vortices are stable, which exhibit a localizedbecomes a “good” solutionlnumerically identical to the
structure of thez components of the spins around the vortexabove solution obtained by iteratignsThe emitted spin
center. In addition to the vorticity=*1,+2, ..., thenon-  waves form a magnon gas; i.e., the vortex moves in a kind of
planar vortices have a second topological chargk is de-  magnon thermostat and transitions to the opposite polariza-
noted “polarization” because its sign determines the side otion occur with a certain probability which depends on how
the xy plane to which the out-of-plane vortex structure dirty the initial condition was.
points. The planar vortices can be considered as haping  (2) An ac magnetic fieldf the amplitude of a field which
=0. rotates in the easy plane is larger than a threshold value, a
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transition to the opposite polarization occurs. In contrast to (h%(1))=0,
(1), the reverse process does not occur because the field
breaks the symmetry of the two polarizations. This will be
the subject of a forthcoming paper.

) The”‘.‘a' n0|seTh_|s_ h_as some similarity wit1), al- whereD, is the variance of the noise. In order to preserve
thoug_h thatis a dete_rmlnlg,tlc_zero-temp_erature gffect. In_Se(fhe isotropy in the easy plane we demand
Il we implement white noise into the microscopic equations
(the Landau-Lifshitz equatignby adding stochastic mag- D.=D.=D. (5)
netic fields to the local fields in which every spin precesses. Y
In this way we model the interactions of the spin degrees ofrhe last term in Eq(2) represents damping in the Landau-
freedom with thermostat degrees of freedgmagnons, Lifshitz form (see Ref. Y. An alternative would be the Gil-
phonons, et¢. We consider a stationary solutid?, of the  bert damping which yields the same results, however, as we
Fokker-Planck equation, using a reduced Hamiltonian whictwill use only very small damping coefficients.
models the vortex core. Such a core Hamiltonian was used in It is convenient to use a representation for the classical
Refs. 25 and 26 for the calculation @ . For a certain spin vectorS, in terms of two angles of rotatiofi, and®,
parameter rangeRy; exhibits two maximafor the two pos-
sible polarizations of a nonplanar vorjeand a saddle point S,=S{siné,, cosd,,,sinb,sind,,cosb,}. (6)
(corresponding to the planar vorpex

In Sec. lll we calculate the probability flux over the re-
gion around the saddle point using Langer’s instanto
theory?’ Here we use the fact that fa— &, there is a soft
mode among the normal modes which were obtained nu-

(RN (1)) =2D 48y Bgqr O(E—1'), (4)

The variablesvi,,= cosé, and®,, constitute a pair of canoni-
(fally conjugated variables, which means that in the no-
damping casex=0)

merically for a system with one vorteX. d®y, - M
Finally, our prediction for the transition rate is tested by dt M,
Langevin dynamics simulations, i.e., by integration of the
stochastic Landau-Lifshitz equation. For these tests the de- dM, d(H+V)
sign of the simulations, including the choice of the parameter T b, ™

ranges, turns out to be decisive.
Here

1. HAMILTONIAN AND THE FOKKER-PLANCK
EQUATION H=—32 (\M M, _s+P.P,_scog®,—d,_,)),
n,A

We consider a Heisenberg model wixY or easy-plane
symmetry with classical spin§, located on the sites

=(ny,ny) of a square lattice V(t)=—2 (h(t)M,+ P [hi(t)cog ) +h)(t)sin(@,)])
n
)
S X GX Y gy 22
H ;A Ja(SiSi-at SiS-atASS-w), @ is the Hamiltonian of the system in terms of the new vari-
) ) ables andP,= 1-M2.
whereh=1-¢ is the anisotropy parameter £\ <1), J5 Using the variable$/ , and®,, the Landau-Lifshitz equa-

=J is the exchange integral andl=(A,,A,) is a vector tjon (2) can be written as a set of coupled stochastic equa-
which connects a spin with its nearest neighbakg=+1,  tions

Ay=0 orAy==*1,A,=0). The spin dynamics is governed

by the Landau-Lifshitz equation. Since we want to study the do, oH y

interaction with thermal noise, we implement a noise and a at M. 1-m2 E"_fn(Mnannat)’

damping term A noon

dM,  H

oH
_ _ _ 2
) dt  od, v M“)aMn+g“(M“'¢“’t)’ ©)

+h X o
7S, n(t) Sy s,
Here we have added a stochastic magnetic fig(d) to the
local field 9H/dS,, in which the spinS,, precesses. Sindg, is M
multiplied with S,,, this means multiplicative noise. fo(Mp,®,,t)=—hi(t)+ P—“(hﬁ(t)cos{CI)n)

Another way to obtain the stochastic term in E2). con- n
sists in adding to the Hamiltonian interactions between the +hY(t)sin(®,)),
spins and local stochastic magnetic fields A

JH
3 +vS, X

d J—
o™ T SX

where

gn(M n ,(I)n ,t) = Pn(hﬁ(t)sm(q)n) - hx(t)coiq)n))
V(t)=—2> hy(1)S,. &) (10

are multiplicative stochastic forces. From E¢4), (5), and
We use Gaussian white noise with (10) we obtain
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(fA(Mp, @ ) (M), D/, 1)) is fulfilled. HereT is the temperature of the crystal. Under
meen the condition(15) the Fokker-Planck equation for the func-
4 tion P has the form

M M
:Zé(t—t/)énnr DZ+ D WCOi@n—q)é) )

n' n
d 9 aH oH
' ’ —’P:E (_ +L2_)
(In(M, @, )G (M, , D, 1)) a4 apa|\ om, 1-m2 dg,
=2D6(t—t') 8o PP cog O, — D)), 1 9 J
+ e — —
7T1—m§ r?d)np ; am;,
<fn(Mnr(I)nvt)gn/(Mr,1/ ,‘I);,/ ,t’)) JH 9
X +y(1—m3) — | P+ yT(1—m3) —P|.
! ddn " om, N om,

P H ’
:zD5(t—t')5nn,MnP—:sm(q>n—q>n). (11) a6

We have introduced the stochastic magnetic fi#ig8) | et us consider first the equilibrium properties of the sys-
to model the interaction of the spin degrees of freedom withem, \we assume that a vortex is situated in the center of a
thermostat degrees of freedom: phonons, electrons, othghit cell at the origin of a coordinate system. The static in-
magnetic excitations, etc. However, it is clear that the ther'plane vortex fn,=0) is characterized by the angl@o
mostat excitations are characterized by finite correlatio, hich satisfy the equation :
times and a more appropriate modeling of the influence of
these excitations would be to use colored noise. The problem
under consideration is very complicated, however, if consid- 2 Sin(®2—®°_,)=0. (17)
ered in the framework of a non-white-noise approach. There- noTn-a
fore we restrict ourselves to the ca@p, where we under-
stand the white noise approach as a limiting case of thghe®? are approximately given by the usual in-plane vortex
colored-noise process and therefore we consider@gsnd  structure
(10) as Stratonovich stochastic differential equatidns.

From Egs.(9)—(11) we obtain that the equation for the

probability density function ®o=q arctar(% , (18)
X
P(my, b t)= < IT s(m,— Mn(t))5(¢n—¢’n(t))> wheren, ,n,=(2n+1)/2,n=0,=1,+2, ... (the lattice con-
" (12 stant is chosen equal t9 &nd the integeq is the vorticity. It
) s knowr™>? that the in-plane vortex is stable for<Q
has the form <\, Where the critical valua . of the anisotropy parameter
depends on the type of the lattife.g., for square lattices
P P 9H y  H A=0.703(Ref. 26]. ForA >\ the in-plane vortex becomes
—P= — (— —t—— —)P unstable and an out-of-plane vortex is created. To gain in-
Jt m I¢n IMy — 1—my ddy sight as to how the temperature influences the stability con-
m?2 P P ditions we need a reduced form of the Hamilton{@8hwhich
+|D,+D _”Z) p} — 2 effectively takes into account both types of vortices: in-plane
1-my/ den nodm, and out-of-plane. Such an effective Hamiltonian was pro-
JH 3 posed in Ref.. 25. It was shown in Ref. 25 that the dynamics
X +y(1-m?) —|P+D(1-m?) —7)}_ of the vortex instability can be understood under the follow-
I am, amy, ing assumptions.
(13 (i) The in-plane angle@ﬂ for static in-plane and out-of-

plane vortices are given by E(L7).
As was mentioned above, the stochastic magnetic fields (ii) The deviationsy,=®,—®? of the in-plane angles
hn(t) model the interaction with thermostat degrees of freefrom their static values are radially symmetric. They strongly

dom. Therefore it is quite natural to demand that @@) has  decay with the distance,= (n,— 1/2)%+ (ny— 1/2)? from
a stationary solution in the form of the Gibbs distribution the vortex center:

pstNGXp( — E) ) (14) Yy, for n==%(1/2,1/2,+=(—-1/2,1/2
T y_ | Ye T n=t@R1E(-12.30
It is seen from Eq(13) that the functior{14) is a steady-state " Y3, for n=.i (1/2,3/2,+(-3/2,1/2
solution of the Fokker-Planck equatiofl3) when the 0, otherwise.

fluctuation-dissipation condition

(i) The deviations of the out-of-plane components are
D,=D=+vT (15 also radially symmetric and decay strongly
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my, for n==(1/2,1/2,£(—-1/2,1/2

m,, for n==(3/2,1/2,+(—-1/2,3/2

my, for n==(1/2,3/2,+(~3/2,1/3 9
0, otherwise.

Under these assumptions the dynamics of the vortex core
is described by the following Hamiltonian:

He=— 4J{N (M54 my(my+ mg) + m,ms)

+ 0811 (P, COS Yy — ) + P3 COL Py — fr3))

+(€0S8;+€0S85) (P, COSis+ P3 COSY3)

. e
+ P2p3 SIN(28;)cod ¥ — ih3) }, (21 ;I/;'M““ “ ”
with M/"/'Q‘M“ mm
i
Po=V1-m2, =123 (22 o7 \«:':%‘3‘2'3‘%‘.’0‘0’0‘0‘0‘0‘0‘00"0%
Ty
- AR NES)
51:(1)(1)/2,1/2_@2/2,1/2 52:‘1’(?3/2,1/2_‘1)2/2,1/2 (23 - “m
Using the approximatiofy,= i3, m,=m; and the static in- >
plane angle distribution(18), we get cos5,=2/\/5, coss, (a) SO
=8/\/65 and in this case the Hamiltoni&21) coincides with S e r e
the Hamiltonian in Ref. 25. ]

Being interested in the distribution of the out-of-plane
componentsn, we integrate the functiol4) with respect
to the in-plane anglegr,. We obtain a reduced stationary

probability density 2or ]
Psi(my,my,ms)

1
—— e)\B(miJr my(my+ mgz) +mymg)

Pg(m,)

2
" f " dpeP Sin201)pzpg coso
0

X1o(B COSE1P1\P3+ P3+2P2P3 COSH)

X 1o(B(cOS8; +C088,) \p3+ p5+2p,ps COSe),

(24)

where3=4J/T is a dimensionless inverse temperatuvés
the normalization factor andy(x) is a modified Bessel

function393? i ]
The analysis of the functiori24) shows that it has a SO S R S S R T
. : . . -1.0 0.5 0.0 05 1.0
uniqgue maximum atn;=m,=ms=0 if the anisotropy pa- (b) m,

rameteri is below a temperature dependent threshold value
M(T). This case corresponds to the stable in-plane vortex. If FIG. 1. (a) Stationary probability distributiofiL4) (without nor-
malization, using the simplified core Hamiltonia26). m; and ¢,
A>N(T) (25 are the deviation&20) and(19) of the out-of-plane components and
in-plane angles from their static values, respectivély.Reduced
the function (24) has two maxima atm;==mJ, m,=  stationary distributio27), obtained by integrating the distribution
+md, my=+m3 and a saddle point ah;=m,=mz=0.In  in (a) over ;.
this case the probability density functid@4) describes a
bistable system of two out-of-plane vortex structures with He=—4 J{y\m§+2 COS8;p1 COSYy}. (26)
opposite polarizations.
Let us illustrate this statement by a crude approach wheithe corresponding stationary distributioBg(m,,#) is
only two degrees of freedom, and ¢ are included. In this plotted in Fig. 1a) (without normalizatioh The reduced sta-
case the core Hamiltoniai21) simplifies to tionary probability density24) has the form
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Psi(my) =exp BAMY) 1 o(23 c0861p1)/ N, 11(28 c0s6;)

. 10(2Bcoséd,)

N= f_ld m, exp(BAM?)1o(28 cosd1py).  (27) A more accurate approach is based on the expansion of the
Hamiltonian(21) into a series with respect ta/}. Then in

The function’Ps(m,) describes a bimodal distributidisee  the harmonic approximation with respect to tig the sta-
Fig. 4(b)] in the range tionary probability density is determined by the expression

B cog 8;>\>c0sd; (28)

exp(BH ({m},{#}=0))

Pe(my,my,mg) = - . (29
° N \p1p2Pa(p2+ ps) (SIN(28,) (P2 + p3) + Py COSS; + COSS; + COSS)
The function(29) describes a bimodal distribution if
48 c0s61(2 cosd;+c0sd,+ 2 sin 25;) — 2 sin 26, — c0Ssd,— 3 c0SH.
A>A(B)= B 1( 1 2 1 1 2 L (30
4B(2 sin 26, + c0sd,+ 2 c0Sd)
|
Thus the function24) has two maxima am;=*m?, m, % ]
=+mjJ, my=+m) and a saddle point ah;=m,=m;=0. -l 17 for i<N 33
The phase diagrarfthe bifurcation curven(B)] is shown in : ' ) )
Fig. 2. It is worth noting that for a given anisotropy param- y(1—77), for i=N+1
eter\ the phase which corresponds to the in-plane vortex is
always the low-temperature phase. andA, ; is the following antisymmetric matrix:
IIl. SWITCHING RATE Sinj. I=N
Following Langef’ (see also Ref. 29t is convenient to Aij={ ~6ij+n. J=N (34
introduce a new set of variablés;}= (7, . .. 7,y) Which 0, otherwise.
consists of N out-of-plane spin deviations 7, . . . 7n)

={m,} and N canonically conjugated variables E({7}) is the Hamiltonian of the system expressed in terms
(7n+1s -+ - m2n) =10} and to write the Fokker-Planck of the variableq 7).
equation(16) in the form We are interested in a switching process between the vor-
tex states with different polarization. Therefore we consider
IP({7},1) :2 iM- (EPJFTLP) (31) the anisotropy-temperature regitsee Fig. 2 where the out-
at  on " i an |’ of-plane vortices are stable. In this case the energy function
E({#}) has a locally stable state @iy,} (an out-of-plane
vortex with positive polarizationwhich is separated by an
M =T 8 —A . (32) energy barrier from another stable stéte 7y} (an out-of-
I A plane vortex with negative polarizatipiWWe assume that the
with system is initially prepared in a vortex state with, say, posi-
tive polarization, and we consider the relaxation process as
. . ' 1 ] an escape process from the potential well which corresponds
= to the vortex{ 7y} neglecting the backward process. Another
] possibility to make the vortices with different polarization
] nonequivalent is to apply a constant magnetic field oriented
j along the hard-axigperpendicular to the easy-planéhe
in-plane vortex{n} with the same vorticity as the out-of-
plane vortex corresponds to the energy barrier which must be
overcome. The poinfz} is a saddle point oE({ 7}).
We consider a temperature which is much smaller than
] the energy difference between in-plane and out-of-plane vor-
o0 . - . : o tices. After having been initially in the stafeyo}, the system
B reaches first a quasiequilibrium state near the metastable
point{ 7y} with the probability density” given by the Gibbs
distribution

where

0.8

L unimodal
0.6

0.4

0.2

FIG. 2. X vs B phase diagram. Above the bifurcation cuig)
there are two maxima i, corresponding to the two polarizations
of a nonplanar vortex, and one saddle point corresponding to a
planar vortex structure. P~e BT with {9}={7o}. (35
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The probability flux over the barrier is concentrated in a 2N
narrow region around the saddle po{nf}.2° To obtain the w > MUy =vU,, (42)
flux, let Dy, (n,i=1,...,2N) be the eigenvectors of the I'=1
Hessian matrix whereU, are eigenvectors and
& i({n)=Elaman;, i,j=1,.... N (36 ~ 2N
M”l:_z D|,iMi,jD|’,j' (43)
evaluated af } ={7} ij=1

Taking into account Eq(37) we can rewrite Eq(43) in the

2N
f
2 & i({n})Dyj=u Dy (37) orm
=1 2N
andp, are the eigenvalues. Thus the energy of the system in ,Zl & i ({mHM; juj=ru;, (44)
the immediate neighborhood of the saddle pdi} can be M=
written as wherev;=3",D, U,

Coming back to the original variables, andm, we ob-

1 ) tain from Eqgs.(32), (33), (34), and (36) that the switching
E=E({n})+ 521 Mg (38 rate between out-of-plane vortices with opposite polarization
is determined by the expression

2N

where the new variables

|V| Fin_ I:out
2N K= zexy{ B ) (45)
§|=i§1 Di(7i—) (39)

where

are the principal axes coordinates.

Coming back to the original variables, and ¢, we can
say that the Hamiltonian of the system in the close vicinity to
the in-plane vortex state can be written as is the free energy of the out-plane vortex ang(out) is the

mth normal mode of the vortex.

Fou=Eout T2, IN(w(out)/T) (46)
m

1
5CogPR— P, ) (Yo~ ¥+ a)’

1
=Lj + = ’ . .
H=Einpiane ZJ;A Fn=EntTY IN(wn(in)/T)+TIn(|w(in)|/T) (47)
m

+cog(q>g—q>g+A)m§—)\mnmn+A) , (40) s an effective free energy of the in-plane vortex. In E)
the prime means the summation over the stable modes of the

where y,=®,—® are small deviations of the in-plane in-plane vortex andw,(in)| is the modulus of the purely

. ) 0 . imaginary frequency which corresponds to the unstable
angles from their static value®,. The out-of-plane spin mode of the in-plane vortex
d§V|at|0nsmn are also assumed t(? be smqll. In this case the " 1 geterministic growth rateis the negative eigenvalue
eigenvalues, correspond to the linear spin-wave spectrumqs o eigenvalue problem
of the system in the presence of an in-plane vortex. The

normal modes were investigated in Ref. 28 and it was found 9°H D @
out that there is a particular soft modés frequency goes to M) (yv, —vy)=vv 511),
zero forN—\., A<\.) which is responsible for the cross- n’ N m =000
over from the in-plane to the out-of-plane vortex structure. In
the interval\ >\ this mode becomes unstable. In terms of 9°H
i Ny i i D= (yv(z,)+v(l,))= w'? (48
Eq. (37) it means that the corresponding eigenvalue, say < \amuamy | oo 7 On n noo
is negative. n= 0%,

According to Ref. 27(see also Ref. 2%he rate constant
for an escape from the metastable pdint} via the saddle
point{7} has the form

wherevﬁ,l),vff,) are the components of the eigenvector and

we took into account that in the vicinity of the saddle point
one can neglect the dependencengpin the damping con-

stantsI’; .
_ vl [det€({noh)/V27T) Let us evaluate these formulas in the crude approach al-
“T2om |det {7}/ 27T ready used in Sec. |. We consider the core dynamics taking

into account only one pair of canonically conjugated vari-

e — E{7}) —E{ n0}) 4y  ablesm; andyy and puttingm,=my=0, ,=1;=0 in Eq.
ex T ' (42) (21). In this case the eigenvalue probl€a8) reduces to
where |1] is the deterministic growth rate of the unstable V=8I (yvP—-v?)=0,

mode at the saddle point. The quantityis the negative
eigenvalue of the following eigenvalue problem: w@+8I(N— o) (yv@P+vM)=0, (49
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where\.=cosd;. The deterministic growth rate takes on ticity but the same polarization as the vorigar free bound-
the form ary condition$. Equation(55) was derived from the Landau-
Lifshitz equation in the continuum limit, assuming a rigid
Ne— ﬁ) y— l W2 +4—r)he. (50 vortex shape. In a bet'ge.r approximqtion the trajectorigs turn
2 2 out to be a superposition of cycloids around the circular

The out-of-plane vortex exists for>\ and the static value Motion; but this fact seems to be unimportant for the
of the out-of-plane spin deviation m2= +y1- )\62/7\2. The SW{;[\(;E'ng rp])rogess ‘_Nh'Ch we dECUS,S herle.d d th
Hessian matriX36) is evaluated at the metastable pdioat- en the damping term in E) is included, the vortex

of-plane vortex and at the saddle poir(in-plane vortex ~ MOVeS outwards on a spird, until it finally reaches the
which yields boundary where an annihilation together with the image

takes place. However, we choose an initial position far away
A()\Z—)\ﬁ) from the boundary and a very small damping parameter;
)\—g ~(A=\g O therefore we h_ave plenty of time to observe the motion of the
4] 5| 4J( 0 N ) (51)  vortex before it gets close to the boundary.
0 E c When the stochastic fields,(t) in Eq. (2) are included,

A the vortex trajectories naturally become noisy. In this case
the variancegX?) —(X;)? can be computed as a function of
time and can be compared with a collective variable theory

U2 F AN (A= N + y(A—2\,) for finite temperaturd?~>® This yields an effective vortex
=2J diffusion constanD,, .
In contrast to the vorticityg, the polarizationp of the
INF N, (B BT vortex is not a constant of motion in a discrete system: The
X — e (BinTEouw ! (52) . . .
A out-of-plane vortex structure can flip to the other polarization
due to the stochastic fields. Then the direction &f
=2mqpe, is reversed and thus the direction of the vortex

r=28J

respectively. Inserting Eq¢50) and(51) into Eq.(41) yields

K
w

c

We see that in the low-damping limit the switching rate re-

duces to motion is reversed, too, as can be seen from (B§).
2] In order to measure the transition ratén the simulations
k=—\2—=\ie™ En~Eo/T (53 it is necessary to choose carefully the parameter ranges:
m has already been discussed above, we dak®.9 which is
while in the overdamped limit sufficiently far away from both\.=0.70 and the isotropic

limit A=1. For our circular system we choose a radius
_ 2y AMAe e g T =24 which provides enough space for the vortéhe out-
k=——(A=Xe)\ N oo (34 of.plane vortex structure should not contact the boundary
) . even during long integration timegg-or the same reason the
We note that the expressiols2), (53), and(54) are valid  ipjtia| distanceR, of the vortex center from the middle of the

only when Ein—Eou)/T>1. This condition is not fulfilled  ¢jrcle should not be too large. On the other haigshould

whenh—Ac. not be too small, otherwise the driving forEewould not be
strong enough to overcome the pinning forces of the lattice.
IV. LANGEVIN DYNAMICS SIMULATIONS ChoosingRy=10 both conditions can be fulfilled, if the

Odampingy is small enough(The largery is, the sooner the
vortex reaches the boundan®On the other hand, a smayl
means a long saturation tingafter the start of the simulation
the energy rises and saturates at a value independept of
For v=0.002 we get acceptable saturation time300 [in
units of 2/(J9)].

The most important parameter naturally is the tempera-
re: For T<E;,— E, the transition ratec in Eq. (52) is
E(tremely small and thus the integration times would be
much too long, which are needed to get a sufficient number
9f transition events.

On the other handT should not be too large, otherwise
vortex-antivortex pairs appear spontaneously in the vicinity
of the vortex. This definitely changes the translational mo-
tion of the vortex, and it is possible that the transition to the
other polarization is influenced, too. The differenkg,

GXX=F (55) —Equt €an be estimated by comparing the total energies of
' our system with. =24 in the presence of a static in-plane or
The driving forceF is the 2D Coulomb force between the out-of-plane vortex at the center of a lattice celE;,
vortex and an image vortex which is located at the distance- E, = 109.40-108.49=0.91 (in units ofJ). The factor in
L2/R, from the circle cente?® The image has opposite vor- front of the exponential in Eq(53) is approximately 0.12,

In order to test our theory we have numerically integrate
the stochastic Landau-Lifshitz equati®) for a large square
lattice in which we cut out a circle with radidsusing free
boundary conditions. As initial spin configuration we take an
out-of-plane vortex with center at a distanBg from the
middle of the circle. Since the anisotropy paramatshould
not be chosen close o, (see Sec. )| the diameter 2, of
the out-of-plane vortex structure in any case is considerabl}
larger than the lattice constant. This has the advantage th
the vortex can move smoothly over the Peierls-Navarro po
tential of the lattice; indeed discreteness effects are hardl
visible in the motion.

Without noise and damping the trajectofyt) of the vor-
tex center would be a circle with radib, in a first approxi-
mation which is given by the Thiele equatf8n
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TABLE I. Transition timesr from simulations, with statistical errors,,/ 7, compared to the theoretical

estimatesry, .
No. type T ty t No N T Trms! T Tih
1 I 0.1 1200 3800 497 477 92516 22% 70334
2 I 0.15 1200 3800 407 158 4016 6% 3386
3 I 0.2 1200 3800 100 1 825 10% 743
4 Il 0.15 1200 4000 254 100 4291 8%
5 Il 0.15 2200 4000 264 100 4120 8%
6 Il 0.15 3200 4000 181 100 6741 11%
7 1l 0.15 4200 4000 405 100 2859 6%
8 Il 0.15 3500 905 400 4286 5% 3386

therefore 0.T=<0.3 is expected to be an appropriate tem- In a type-ll simulation we only make one pre-run of
perature range(The Kosterlitz-Thouless transition tempera- lengtht,, i.e., the main runs all start from the same initial
ture is about 0.8 fon=0.) condition. By taking different lengthiy, we can see whether
The initial spin configuration for our simulations stems 7 depends oriy and/or the initial condition. We performed
from an iterative prograf which produces a discrete vortex this type of simulations because we had some hints from the
structure on the latticéin this way we avoid the radiation of investigation of the varianc&that a certain vortex mode
spin waves which would occur during the first time units if a might be gradually excited thermally which could trigger the
continuum approach for the vortex structure were ys@d. transition. The frequency of this mode is very low, namely
we interpret the Landau-Lifshitz Eq2) as a Stratonovich Aw=w;—w,, wherew; , are the eigenfrequencies of two
stochastic equation and as we use multiplicative noise, wguasilocal modes of the circular system with one vortex.
take the Heun integration scheme which was developed fok, , are identical to the frequencies of the cycloidal oscilla-
this situatior?”*® The spin lengthS is conserved in Eq(2)  tions of the vortex trajectory around the mean péske
and can be used as a test of the program, the time step ébove.
0.01, in units of/(JS). However, our type-1l simulations in Table | do not reveal
For reasons to be discussed below, we have performeal correlation between the lengthof the prerun and the first
two different types of simulations: In tgpl a complete simu-  transition timer. Nevertheless the values ofdiffer consid-
lation for one temperature consists of many runs with differ-erably for the different simulations. Thus we conclude that
ent sequences of random numbers which produce the whigepends strongly on the initial condition, which is identical
noise. The total integration time is divided into a first part offor all main runs of one simulation. This conclusion is con-
lengtht, (denoted as prergrand a second part of length  firmed by looking at the first 200 time units immediately
(denoted as main rynWe choose in the order of 1000 after the beginning of the main runs: e.g., in simulation no.
which is larger than the saturation time and large enough that about 20% of the vortices switched over to the other po-
the vortex has no memory of the configuration from which itlarization, while in no. 6 no vortex did s@-ig. 3). A closer
started; i.e., in every run we have at the titgea different  inspection of the initial spin configurations shows thate-
initial condition for the main run. Only the main runs are pends both on the position of the vortex center within a
used for the thermal average: the average titrefter which  lattice cell and on the dynamical state of the vortex.
the first transition of the vortex to the opposite polarization Lor } . . ‘
occurs, is obtained from 0'8 T Tl 1

(56) I S, T

N(t)=Nge V7.

.. -
-, -
.., ~ -

~.

Here Ny and N are the number of runs in which the vortex
has made no transition untiy and ty+t, respectively.r
must be compared with the inverse transition rate = 7,
from Eq. (53), because we work with a small damping pa-
rametery=0.002 (Table ). The agreement is rather good,
taking into account that we used a very crude model for the 02 ’ ‘
vortex core formed from only the four innermost spins. "o 1000 2000

We counted only the first transitions because in our theory t
we have calculated the escape rate from a metastable state..~ 5 Percentage of vortices which have not yet made a tran-
After the first transition the vortex is typically_ i_n a different giion to the opposite polarization up to the timeof a type-Ii
dynamical state than before, thus the probability for the nexgjmjation. The temperature %= 0.15. The solid and dashed lines
transition is expected to be different, too. In fact, we 0b-represent two sets of rurigo. 7 and 6 in Table)lwith different
tained a total number of 870 transitions in 158 runs wtith jnitial configurations(which arise from using two different lengths
=4000 for T=0.15; this means that the average transition, for the pre-run. The dash-dotted line results from sampling the
time is 917, which is about four times smaller than the first-transition times from the simulations no. 4—7 of Table I, omitting
transition time 4286 in Table I. the first 500 time units of each main run.

~~~~~
.....
~~~~~

NN,

3000 4000
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An additional test of the above conclusion was made byather good, considering that the vortex core was described
leaving out the first 500 time units of each main r@ash- only approximately by using only the four innermost spins.
dotted line in Fig. 3. Then we expect that the vortices have We did not make any tests for higher temperatures because
no memory of their initial condition and the resulting the probability for the spontaneous appearance of a vortex-
should be the same as in the type-l simulationihin the  antivortex pair in the vicinity becomes too large; the interac-
statistical errork In fact, this is confirmed by comparing no. tion with this pair could then influence.

8 with no. 2 in Table I. We emphasize that the above results were obtained by
effectively averaging over many initial conditions. This is
V. CONCLUSION necessary because our simulations demonstrate that the tran-

) o o sition rate depends very strongly on the initial condition, i.e.,
In this work we used a very simplified Hamiltonian for poth on the position of the vortex center within a lattice cell

the cores of both planar and nonplanar vortices. Addingang on the velocity of the vortex at this position.
white noise to the local fields in which the classical spins

precess we obtained a Landau-Lifshitz equation with multi-

plicative stochastic forces. The stationary solution of the cor- ACKNOWLEDGMENTS
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