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Noise-induced switching between vortex states with different polarization
in classical two-dimensional easy-plane magnets
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In the two-dimensional anisotropic classical Heisenberg model withXY symmetry there are nonplanar
vortices which exhibit a localized structure of thez components of the spins around the vortex center. We study
how thermal noise induces a transition of this structure from one polarization to the opposite one. We describe
the vortex core by a discrete Hamiltonian and consider a stationary solution of the Fokker-Planck equation. We
find a bimodal distribution function and calculate the transition rate using Langer’s instanton theory~1969!.
The result is compared with Langevin dynamics simulations for the full many-spin model.
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I. INTRODUCTION

There are several classes of quasi-2D~two-dimensional!
magnetic materials for which the ratio of inter- to intrapla
magnetic coupling constants is typically 1023– 1026: ~1!
Layered magnets,1–4 like K2CuF4, Rb2CrCl4,
~CH3NH3!2CuCl4, and BaM2(XO4) with M5Co, Ni, . . .
and X5As, P, . . . ; ~2! CoCl2 graphite intercalation
compounds;5 ~3! magnetic lipid layers, like manganes
stearate.6 Many of these materials can be described by
classical 2D Heisenberg model withXY or ‘‘easy-plane’’
symmetry~Sec. II!.

In this model vortices play the decisive role: they a
responsible for a topological phase transition7,8 at the
Kosterlitz-Thouless temperatureTc and, aboveTc , for ‘‘cen-
tral peaks’’ in the dynamic form factors for the spin corre
tions. The central peaks were observed in inelastic neu
scattering experiments9–13 and in combined Monte Carlo–
spin dynamics simulations.14–19 The observed central peak
agree qualitatively, partially even quantitatively, with th
central peaks which were obtained by a vortex-g
approach.14–19

There are two types of static vortex solutions whose str
ture and energy differ, depending on the anisotropy of
Heisenberg exchange interaction.16 For strong anisotropy
~i.e., if the anisotropy parameterd exceeds a thresholddc)
only planar vortices are stable for which all spins are lying
the easy plane~xy plane!. For weak anisotropy (0,d,dc)
only nonplanar vortices are stable, which exhibit a localiz
structure of thez components of the spins around the vort
center. In addition to the vorticityq561,62, . . . , thenon-
planar vortices have a second topological chargep. It is de-
noted ‘‘polarization’’ because its sign determines the side
the xy plane to which the out-of-plane vortex structu
points. The planar vortices can be considered as havinp
50.
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The productqp of the topological charges determines t
dynamics because the vortices are subject to a ‘‘gyroc
pling force’’ G3V, which is formally equivalent to the Lor-
entz force:20,21 V is the velocity of the vortex center, bu
instead of an external magnetic field we have here an int
sic quantity, produced by the vortex itself and carried alo
with it: The ‘‘gyrovector’’ G52pqpez which is orthogonal
to thexy plane. The formula forG was derived in the con-
tinuum limit and, strictly speaking,G is conserved only in
this limit. Nevertheless, spin dynamics simulations for 1 o
vortices showed that the direction ofG ~or the sign ofp,
becauseq is always conserved! does not change during th
simulation.22,23

However, we know so far three exceptions, i.e., situatio
in which the out-of-plane vortex structure can sudde
make a transition from one polarization to the opposite o
As the direction ofG is reversed, this has a drastic effect o
the dynamics: The direction of the gyrocoupling force is a
reversed, which means that the direction of the vortex m
tion is reversed, too. The three transition mechanisms ar
follows.

(1) Interaction with spin waves.The easiest way to se
this is to use ‘‘dirty’’ initial conditions for the spin dynamic
simulation:24 e.g., a structure which is not a good approx
mation to the 1-vortex solution~this solution can be obtaine
numerically by an iteration procedure24!. Then many spin
waves are radiated at the beginning of the simulation, wh
the approximate vortex structure adapts to the lattice
becomes a ‘‘good’’ solution~numerically identical to the
above solution obtained by iterations!. The emitted spin
waves form a magnon gas; i.e., the vortex moves in a kind
magnon thermostat and transitions to the opposite polar
tion occur with a certain probability which depends on ho
dirty the initial condition was.

(2) An ac magnetic field.If the amplitude of a field which
rotates in the easy plane is larger than a threshold valu
7010 ©1999 The American Physical Society
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transition to the opposite polarization occurs. In contras
~1!, the reverse process does not occur because the
breaks the symmetry of the two polarizations. This will
the subject of a forthcoming paper.

(3) Thermal noise.This has some similarity with~1!, al-
though that is a deterministic zero-temperature effect. In S
II we implement white noise into the microscopic equatio
~the Landau-Lifshitz equation! by adding stochastic mag
netic fields to the local fields in which every spin precess
In this way we model the interactions of the spin degrees
freedom with thermostat degrees of freedom~magnons,
phonons, etc.!. We consider a stationary solutionPst of the
Fokker-Planck equation, using a reduced Hamiltonian wh
models the vortex core. Such a core Hamiltonian was use
Refs. 25 and 26 for the calculation ofdc . For a certain
parameter range,Pst exhibits two maxima~for the two pos-
sible polarizations of a nonplanar vortex! and a saddle poin
~corresponding to the planar vortex!.

In Sec. III we calculate the probability flux over the r
gion around the saddle point using Langer’s instan
theory.27 Here we use the fact that ford→dc there is a soft
mode among the normal modes which were obtained
merically for a system with one vortex.28

Finally, our prediction for the transition rate is tested
Langevin dynamics simulations, i.e., by integration of t
stochastic Landau-Lifshitz equation. For these tests the
sign of the simulations, including the choice of the parame
ranges, turns out to be decisive.

II. HAMILTONIAN AND THE FOKKER-PLANCK
EQUATION

We consider a Heisenberg model withXY or easy-plane
symmetry with classical spinsSn located on the sitesn
5(nx ,ny) of a square lattice

H52(
n,D

JD~Sn
xSn2D

x 1Sn
ySn2D

y 1lSn
zSn2D

z !, ~1!

wherel512d is the anisotropy parameter (0<l,1), JD

[J is the exchange integral andD5(Dx ,Dy) is a vector
which connects a spin with its nearest neighbors (Dx561,
Dy50 or Dy561, Dx50). The spin dynamics is governe
by the Landau-Lifshitz equation. Since we want to study
interaction with thermal noise, we implement a noise an
damping term

d

dt
Sn52Sn3S ]H

]Sn
1hn~ t ! D1gSn3S Sn 3

]H

]Sn
D . ~2!

Here we have added a stochastic magnetic fieldhn(t) to the
local field]H/]Sn in which the spinSn precesses. Sincehn is
multiplied with Sn, this means multiplicative noise.

Another way to obtain the stochastic term in Eq.~2! con-
sists in adding to the Hamiltonian interactions between
spins and local stochastic magnetic fields

V~ t !52(
n

hn~ t !Sn. ~3!

We use Gaussian white noise with
o
eld

c.
s

s.
f

h
in

n

u-

e-
r
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a

e

^hn
a~ t !&50,

^hn
a~ t !hn8

a8~ t8!&52Dadnn8daa8d~ t2t8!, ~4!

whereDa is the variance of the noise. In order to preser
the isotropy in the easy plane we demand

Dx5Dy[D. ~5!

The last term in Eq.~2! represents damping in the Landa
Lifshitz form ~see Ref. 7!. An alternative would be the Gil-
bert damping which yields the same results, however, as
will use only very small damping coefficients.

It is convenient to use a representation for the class
spin vectorSn in terms of two angles of rotationun andFn

Sn5S$sinun cosFn ,sinun sinFn ,cosun%. ~6!

The variablesMn5cosun andFn constitute a pair of canoni
cally conjugated variables, which means that in the n
damping case (g50)

dFn

dt
5

]~H1V!

]Mn
,

dMn

dt
52

]~H1V!

]Fn
. ~7!

Here

H52J(
n,D

„lMnMn2D1PnPn2D cos~Fn2Fn2D!…,

V~ t !52(
n

„hn
z~ t !Mn1Pn@hn

x~ t !cos~Fn!1hn
y~ t !sin~Fn!#…

~8!

is the Hamiltonian of the system in terms of the new va
ables andPn5A12Mn

2.
Using the variablesMn andFn the Landau-Lifshitz equa-

tion ~2! can be written as a set of coupled stochastic eq
tions

dFn

dt
5

]H

]Mn
2

g

12Mn
2

]H

]Fn
1 f n~Mn ,Fn ,t !,

dMn

dt
52

]H

]Fn
2g~12Mn

2!
]H

]Mn
1gn~Mn ,Fn ,t !, ~9!

where

f n~Mn ,Fn ,t !52hn
z~ t !1

Mn

Pn
„hn

x~ t !cos~Fn!

1hn
y~ t !sin~Fn!…,

gn~Mn ,Fn ,t !52Pn„hn
x~ t !sin~Fn!2hn

y~ t !cos~Fn!…
~10!

are multiplicative stochastic forces. From Eqs.~4!, ~5!, and
~10! we obtain
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^ f n~Mn ,Fn ,t ! f n8~Mn8
8 ,Fn8

8 ,t8!&

52d~ t2t8!dnn8S Dz1D
MnMn8

PnPn8
cos~Fn2Fn8! D ,

^gn~Mn ,Fn ,t !gn8~Mn8
8 ,Fn8

8 ,t8!&

52Dd~ t2t8!dnn8PnPn8 cos~Fn2Fn8!,

^ f n~Mn ,Fn ,t !gn8~Mn8
8 ,Fn8

8 ,t8!&

52Dd~ t2t8!dnn8Mn

Pn8

Pn
sin~Fn2Fn8!. ~11!

We have introduced the stochastic magnetic fieldshn(t)
to model the interaction of the spin degrees of freedom w
thermostat degrees of freedom: phonons, electrons, o
magnetic excitations, etc. However, it is clear that the th
mostat excitations are characterized by finite correlat
times and a more appropriate modeling of the influence
these excitations would be to use colored noise. The prob
under consideration is very complicated, however, if cons
ered in the framework of a non-white-noise approach. The
fore we restrict ourselves to the case~4!, where we under-
stand the white noise approach as a limiting case of
colored-noise process and therefore we consider Eqs.~9! and
~10! as Stratonovich stochastic differential equations.8

From Eqs.~9!–~11! we obtain that the equation for th
probability density function

P~mn ,fn ,t !5K)
n

d„mn2Mn~ t !…d„fn2Fn~ t !…L
~12!

has the form

]

]t
P5(

n

]

]fn
F S 2

]H

]mn
1

g

12mn
2

]H

]fn
DP

1S Dz1D
mn

2

12mn
2D ]

]fn
PG2(

n

]

]mn

3F S ]H

]fn
1g~12mn

2!
]H

]mn
DP1D~12mn

2!
]

]mn
PG .
~13!

As was mentioned above, the stochastic magnetic fie
hn(t) model the interaction with thermostat degrees of fr
dom. Therefore it is quite natural to demand that Eq.~13! has
a stationary solution in the form of the Gibbs distribution

Pst;expS 2
H

T D . ~14!

It is seen from Eq.~13! that the function~14! is a steady-state
solution of the Fokker-Planck equation~13! when the
fluctuation-dissipation condition

Dz5D5gT ~15!
h
er

r-
n
f
m
-
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e

s
-

is fulfilled. HereT is the temperature of the crystal. Und
the condition~15! the Fokker-Planck equation for the func
tion P has the form

]

]t
P5(

n

]

]fn
F S 2

]H

]mn
1

g

12mn
2

]H

]fn
DP

1gT
1

12mn
2

]

]fn
PG2(

n

]

]mn

3F S ]H

]fn
1g~12mn

2!
]H

]mn
DP1gT~12mn

2!
]

]mn
PG .
~16!

Let us consider first the equilibrium properties of the sy
tem. We assume that a vortex is situated in the center
unit cell at the origin of a coordinate system. The static
plane vortex (mn50) is characterized by the anglesFn

0

which satisfy the equation

(
D

sin~Fn
02Fn2D

0 !50. ~17!

TheFn
0 are approximately given by the usual in-plane vort

structure

Fn
05q arctanS ny

nx
D , ~18!

wherenx ,ny5(2n11)/2,n50,61,62, . . . ~the lattice con-
stant is chosen equal to 1! and the integerq is the vorticity. It
is known25,28 that the in-plane vortex is stable for 0,l
,lc where the critical valuelc of the anisotropy paramete
depends on the type of the lattice@e.g., for square lattices
lc.0.703~Ref. 26!#. Forl.lc the in-plane vortex become
unstable and an out-of-plane vortex is created. To gain
sight as to how the temperature influences the stability c
ditions we need a reduced form of the Hamiltonian~8! which
effectively takes into account both types of vortices: in-pla
and out-of-plane. Such an effective Hamiltonian was p
posed in Ref. 25. It was shown in Ref. 25 that the dynam
of the vortex instability can be understood under the follo
ing assumptions.

~i! The in-plane anglesFn
0 for static in-plane and out-of-

plane vortices are given by Eq.~17!.
~ii ! The deviationscn5Fn2Fn

0 of the in-plane angles
from their static values are radially symmetric. They strong
decay with the distancer n5A(nx21/2)21(ny21/2)2 from
the vortex center:

cn5H c1 ,
c2 ,
c3 ,
0,

for n56~1/2, 1/2!,6~21/2, 1/2!
for n56~3/2, 1/2!,6~21/2, 3/2!
for n56~1/2, 3/2!,6~23/2, 1/2!
otherwise.

~19!

~iii ! The deviations of the out-of-plane components a
also radially symmetric and decay strongly
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mn5H m1 ,
m2 ,
m3 ,
0,

for n56~1/2, 1/2!,6~21/2, 1/2!
for n56~3/2, 1/2!,6~21/2, 3/2!
for n56~1/2, 3/2!,6~23/2, 1/2!
otherwise.

~20!

Under these assumptions the dynamics of the vortex c
is described by the following Hamiltonian:

Hc524J$l„m1
21m1~m21m3!1m2m3…

1cosd1p1„p2 cos~c12c2!1p3 cos~c12c3!…

1~cosd11cosd2!~p2 cosc21p3 cosc3!

1p2p3 sin~2d1!cos~c22c3!%, ~21!

with

pa5A12ma
2, a51,2,3 ~22!

and

d15F1/2,1/2
0 2F3/2,1/2

0 , d25F3/2,1/2
0 2F5/2,1/2

0 . ~23!

Using the approximationc25c3 , m25m3 and the static in-
plane angle distribution~18!, we get cosd152/A5, cosd2

58/A65 and in this case the Hamiltonian~21! coincides with
the Hamiltonian in Ref. 25.

Being interested in the distribution of the out-of-pla
componentsma we integrate the function~14! with respect
to the in-plane anglesca . We obtain a reduced stationar
probability density

Pst~m1 ,m2 ,m3!

5
1

N elb„m1
2
1m1~m21m3!1m2m3…

3E
0

2p

dfeb sin~2d1!p2p3 cosf

3I 0~b cosd1p1Ap2
21p3

212p2p3 cosf!

3I 0„b~cosd11cosd2!Ap2
21p3

212p2p3 cosf…,

~24!

whereb54J/T is a dimensionless inverse temperature.N is
the normalization factor andI 0(x) is a modified Besse
function.30,31

The analysis of the function~24! shows that it has a
unique maximum atm15m25m350 if the anisotropy pa-
rameterl is below a temperature dependent threshold va
lc(T). This case corresponds to the stable in-plane vorte

l.lc~T! ~25!

the function ~24! has two maxima atm156m1
0, m25

6m2
0, m356m3

0 and a saddle point atm15m25m350. In
this case the probability density function~24! describes a
bistable system of two out-of-plane vortex structures w
opposite polarizations.

Let us illustrate this statement by a crude approach w
only two degrees of freedomm1 andc1 are included. In this
case the core Hamiltonian~21! simplifies to
re

e
If

n

Hc524J$lm1
212 cosd1p1 cosc1%. ~26!

The corresponding stationary distributionPst(m1 ,c1) is
plotted in Fig. 1~a! ~without normalization!. The reduced sta-
tionary probability density~24! has the form

FIG. 1. ~a! Stationary probability distribution~14! ~without nor-
malization!, using the simplified core Hamiltonian~26!. m1 andc1

are the deviations~20! and~19! of the out-of-plane components an
in-plane angles from their static values, respectively.~b! Reduced
stationary distribution~27!, obtained by integrating the distributio
in ~a! over c1 .
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Pst~m1!5exp~blm1
2!I 0~2b cosd1p1!/N,

N5E
21

1

dm1 exp~blm1
2!I 0~2b cosd1p1!. ~27!

The functionPst(m1) describes a bimodal distribution@see
Fig. 1~b!# in the range
-
x

s
k

s
to
b cos2 d1.l.cosd1

I 1~2b cosd1!

I 0~2b cosd1!
. ~28!

A more accurate approach is based on the expansion o
Hamiltonian ~21! into a series with respect to$c%. Then in
the harmonic approximation with respect to theca the sta-
tionary probability density is determined by the expressio
Pst~m1 ,m2 ,m3!5
1

N
exp„bHc~$m%,$c%50!…

Ap1p2p3~p21p3!„sin~2d1!~p21p3!1p1 cosd11cosd11cosd2…
. ~29!

The function~29! describes a bimodal distribution if

l.l~b![
4b cosd1~2 cosd11cosd212 sin 2d1!22 sin 2d12cosd223 cosd1

4b~2 sin 2d11cosd212 cosd1!
. ~30!
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Thus the function~24! has two maxima atm156m1
0, m2

56m2
0, m356m3

0 and a saddle point atm15m25m350.
The phase diagram@the bifurcation curvel~b!# is shown in
Fig. 2. It is worth noting that for a given anisotropy param
eterl the phase which corresponds to the in-plane vorte
always the low-temperature phase.

III. SWITCHING RATE

Following Langer27 ~see also Ref. 29! it is convenient to
introduce a new set of variables$h%5(h1 , . . .h2N) which
consists of N out-of-plane spin deviations (h1 , . . .hN)
5$mn% and N canonically conjugated variable
(hN11 , . . .h2N)5$fn% and to write the Fokker-Planc
equation~16! in the form

]P~$h%,t !

]t
5(

i , j

]

]h i
M i , j S ]E

]h j
P1T

]

]h j
PD , ~31!

where

Mi , j5G id i j 2Ai , j , ~32!

with

FIG. 2. l vs b phase diagram. Above the bifurcation curvel~b!
there are two maxima inPst , corresponding to the two polarization
of a nonplanar vortex, and one saddle point corresponding
planar vortex structure.
is

G i5H g

12h i
2 , for i<N

g~12h i
2!, for i>N11

~33!

andAi , j is the following antisymmetric matrix:

Ai , j5H d i 1N, j ,
2d i , j 1N ,

0,

i<N
j <N
otherwise.

~34!

E($h%) is the Hamiltonian of the system expressed in ter
of the variables$h%.

We are interested in a switching process between the
tex states with different polarization. Therefore we consid
the anisotropy-temperature region~see Fig. 2! where the out-
of-plane vortices are stable. In this case the energy func
E($h%) has a locally stable state at$h0% ~an out-of-plane
vortex with positive polarization! which is separated by an
energy barrier from another stable state$2h0% ~an out-of-
plane vortex with negative polarization!. We assume that the
system is initially prepared in a vortex state with, say, po
tive polarization, and we consider the relaxation process
an escape process from the potential well which correspo
to the vortex$h0% neglecting the backward process. Anoth
possibility to make the vortices with different polarizatio
nonequivalent is to apply a constant magnetic field orien
along the hard-axis~perpendicular to the easy-plane!. The
in-plane vortex$h̄% with the same vorticity as the out-of
plane vortex corresponds to the energy barrier which mus
overcome. The point$h̄% is a saddle point ofE($h%).

We consider a temperature which is much smaller th
the energy difference between in-plane and out-of-plane v
tices. After having been initially in the state$h0%, the system
reaches first a quasiequilibrium state near the metast
point $h0% with the probability densityP given by the Gibbs
distribution

P;e2E~$h%!/T with $h%.$h0%. ~35!
a
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The probability flux over the barrier is concentrated in
narrow region around the saddle point$h̄%.29 To obtain the
flux, let Dni , (n,i 51, . . . ,2N) be the eigenvectors of th
Hessian matrix

Ei , j~$h%!5]2E/]h i]h j , i , j 51, . . . ,2N ~36!

evaluated at$h%5$h̄%

(
j 51

2N

Ei , j~$h̄%!Dl j 5m lDli ~37!

andm l are the eigenvalues. Thus the energy of the system
the immediate neighborhood of the saddle point$h̄% can be
written as

E5E~$h̄%!1
1

2 (
l 51

2N

m lj l
2, ~38!

where the new variables

j l5(
i 51

2N

Dli ~h i2h̄ i ! ~39!

are the principal axes coordinates.
Coming back to the original variablesmn andfn we can

say that the Hamiltonian of the system in the close vicinity
the in-plane vortex state can be written as

H5Ein-plane1
1

2
J(

n,D
S 1

2
cos~Fn

02Fn1D
0 !~cn2cn1D!2

1cos~Fn
02Fn1D

0 !mn
22lmnmn1DD , ~40!

where cn5Fn2Fn
0 are small deviations of the in-plan

angles from their static valuesFn
0. The out-of-plane spin

deviationsmn are also assumed to be small. In this case
eigenvaluesm l correspond to the linear spin-wave spectru
of the system in the presence of an in-plane vortex. T
normal modes were investigated in Ref. 28 and it was fou
out that there is a particular soft mode~its frequency goes to
zero forl→lc , l<lc) which is responsible for the cross
over from the in-plane to the out-of-plane vortex structure
the intervall.lc this mode becomes unstable. In terms
Eq. ~37! it means that the corresponding eigenvalue, saym1 ,
is negative.

According to Ref. 27~see also Ref. 29! the rate constan
for an escape from the metastable point$h0% via the saddle
point $h̄% has the form

k5
unu
2p
Adet„E~$h0%!/A2pT…

udet„E~$h̄%!/A2pT…u

3expS 2
E~$h̄%!2E~$h0%!

T D , ~41!

where unu is the deterministic growth rate of the unstab
mode at the saddle point. The quantityn is the negative
eigenvalue of the following eigenvalue problem:
in

e

e
d

n
f

m l (
l 851

2N

M̃ ll 8Ul 85nUl , ~42!

whereUl are eigenvectors and

M̃ ll 85 (
i , j 51

2N

Dl ,iM i , jDl 8, j . ~43!

Taking into account Eq.~37! we can rewrite Eq.~43! in the
form

(
i , j 51

2N

El , j~$h̄%!Mi , jv j5nv i , ~44!

wherev i5( l 51
2N Dl ,iUl .

Coming back to the original variablescn andmn we ob-
tain from Eqs.~32!, ~33!, ~34!, and ~36! that the switching
rate between out-of-plane vortices with opposite polarizat
is determined by the expression

k5
unu
2p

expS 2
F in2Fout

T D , ~45!

where

Fout5Eout1T(
m

ln„vm~out!/T… ~46!

is the free energy of the out-plane vortex andvm~out! is the
mth normal mode of the vortex.

F in5Ein1T(
m

8 ln„vm~ in!/T…1T ln„uv1~ in!u/T… ~47!

is an effective free energy of the in-plane vortex. In Eq.~47!
the prime means the summation over the stable modes o
in-plane vortex anduv1(in)u is the modulus of the purely
imaginary frequency which corresponds to the unsta
mode of the in-plane vortex.

The deterministic growth raten is the negative eigenvalu
of the eigenvalue problem

(
n8

S ]2H

]Fn]Fn8
D

mn50,Fn
0
~g vn8

~1!
2vn8

~2!
!5nvn

~1! ,

(
n8

S ]2H

]mn]mn8
D

mn50,Fn
0
~g vn8

~2!
1vn8

~1!
!5nvn

~2! , ~48!

wherevn
(1) ,vn8

(2) are the components of the eigenvector a
we took into account that in the vicinity of the saddle po
one can neglect the dependence onmn in the damping con-
stantsG i .

Let us evaluate these formulas in the crude approach
ready used in Sec. I. We consider the core dynamics tak
into account only one pair of canonically conjugated va
ablesm1 andc1 and puttingm25m350, c25c350 in Eq.
~21!. In this case the eigenvalue problem~48! reduces to

nv ~1!28Jlc~g v ~1!2v ~2!!50,

nv ~2!18J~l2lc!~g v ~2!1v ~1!!50, ~49!
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wherelc5cosd1. The deterministic growth raten takes on
the form

n58JS lc2
l

2D g2
1

2
Al2 g2 14~l2lc!lc. ~50!

The out-of-plane vortex exists forl.lc and the static value
of the out-of-plane spin deviation ism1

056A12lc
2/l2. The

Hessian matrix~36! is evaluated at the metastable point~out-
of-plane vortex! and at the saddle point~in-plane vortex!
which yields

4JS l~l22lc
2!

lc
2 0

0
lc

2

l

D , 4JS 2~l2lc! 0

0 lc
D , ~51!

respectively. Inserting Eqs.~50! and~51! into Eq.~41! yields

k5 2J
Al2g214lc~l2lc!1g~l22lc!

p

3Al1lc

lc
e2~Ein2Eout!/T. ~52!

We see that in the low-damping limit the switching rate
duces to

k5
2J

p
Al22lc

2e2~Ein2Eout!/T, ~53!

while in the overdamped limit

k5
2Jg

p
~l2lc!Al1lc

lc
e2~Ein2Eout!/T. ~54!

We note that the expressions~52!, ~53!, and ~54! are valid
only when (Ein2Eout)/T@1. This condition is not fulfilled
whenl→lc .

IV. LANGEVIN DYNAMICS SIMULATIONS

In order to test our theory we have numerically integra
the stochastic Landau-Lifshitz equation~2! for a large square
lattice in which we cut out a circle with radiusL using free
boundary conditions. As initial spin configuration we take
out-of-plane vortex with center at a distanceR0 from the
middle of the circle. Since the anisotropy parameterl should
not be chosen close tolc ~see Sec. II!, the diameter 2r v of
the out-of-plane vortex structure in any case is considera
larger than the lattice constant. This has the advantage
the vortex can move smoothly over the Peierls-Navarro
tential of the lattice; indeed discreteness effects are ha
visible in the motion.

Without noise and damping the trajectoryX(t) of the vor-
tex center would be a circle with radiusR0 in a first approxi-
mation which is given by the Thiele equation20

G3Ẋ5F. ~55!

The driving forceF is the 2D Coulomb force between th
vortex and an image vortex which is located at the dista
L2/R0 from the circle center.23 The image has opposite vo
-

d

ly
at
-
ly

e

ticity but the same polarization as the vortex~for free bound-
ary conditions!. Equation~55! was derived from the Landau
Lifshitz equation in the continuum limit, assuming a rig
vortex shape. In a better approximation the trajectories t
out to be a superposition of cycloids around the circu
motion,32 but this fact seems to be unimportant for th
switching process which we discuss here.

When the damping term in Eq.~2! is included, the vortex
moves outwards on a spiral,33 until it finally reaches the
boundary where an annihilation together with the ima
takes place. However, we choose an initial position far aw
from the boundary and a very small damping parame
therefore we have plenty of time to observe the motion of
vortex before it gets close to the boundary.

When the stochastic fieldshn(t) in Eq. ~2! are included,
the vortex trajectories naturally become noisy. In this ca
the varianceŝXi

2&2^Xi&
2 can be computed as a function o

time and can be compared with a collective variable the
for finite temperature.34–36 This yields an effective vortex
diffusion constantDv .

In contrast to the vorticityq, the polarizationp of the
vortex is not a constant of motion in a discrete system: T
out-of-plane vortex structure can flip to the other polarizat
due to the stochastic fields. Then the direction ofG
52pqpez is reversed and thus the direction of the vort
motion is reversed, too, as can be seen from Eq.~55!.

In order to measure the transition ratek in the simulations
it is necessary to choose carefully the parameter rangel
has already been discussed above, we takel50.9 which is
sufficiently far away from bothlc.0.70 and the isotropic
limit l51. For our circular system we choose a radiusL
524 which provides enough space for the vortex~the out-
of-plane vortex structure should not contact the bound
even during long integration times!. For the same reason th
initial distanceR0 of the vortex center from the middle of th
circle should not be too large. On the other handR0 should
not be too small, otherwise the driving forceF would not be
strong enough to overcome the pinning forces of the latt
ChoosingR0.10 both conditions can be fulfilled, if the
dampingg is small enough.~The largerg is, the sooner the
vortex reaches the boundary!. On the other hand, a smallg
means a long saturation time~after the start of the simulation
the energy rises and saturates at a value independent og!.
For g>0.002 we get acceptable saturation times,300 @in
units of \/(JS)#.

The most important parameter naturally is the tempe
ture: For T!Ein2Eout the transition ratek in Eq. ~52! is
extremely small and thus the integration times would
much too long, which are needed to get a sufficient num
of transition events.

On the other hand,T should not be too large, otherwis
vortex-antivortex pairs appear spontaneously in the vicin
of the vortex. This definitely changes the translational m
tion of the vortex, and it is possible that the transition to t
other polarization is influenced, too. The differenceEin
2Eout can be estimated by comparing the total energies
our system withL524 in the presence of a static in-plane
out-of-plane vortex at the center of a lattice cell:Ein
2Eout5109.402108.4950.91 ~in units of J!. The factor in
front of the exponential in Eq.~53! is approximately 0.12,
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TABLE I. Transition timest from simulations, with statistical errorst rms/t, compared to the theoretica
estimatest th .

No. type T t0 t N0 N t t rms/t t th

1 I 0.1 1200 3800 497 477 92516 22% 70334
2 I 0.15 1200 3800 407 158 4016 6% 3386
3 I 0.2 1200 3800 100 1 825 10% 743
4 II 0.15 1200 4000 254 100 4291 8%
5 II 0.15 2200 4000 264 100 4120 8%
6 II 0.15 3200 4000 181 100 6741 11%
7 II 0.15 4200 4000 405 100 2859 6%
8 II 0.15 3500 905 400 4286 5% 3386
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therefore 0.1<T<0.3 is expected to be an appropriate te
perature range.~The Kosterlitz-Thouless transition temper
ture is about 0.8 forl50.)

The initial spin configuration for our simulations stem
from an iterative program24 which produces a discrete vorte
structure on the lattice~In this way we avoid the radiation o
spin waves which would occur during the first time units i
continuum approach for the vortex structure were used.! As
we interpret the Landau-Lifshitz Eq.~2! as a Stratonovich
stochastic equation and as we use multiplicative noise,
take the Heun integration scheme which was developed
this situation.37,38 The spin lengthS is conserved in Eq.~2!
and can be used as a test of the program, the time ste
0.01, in units of\/(JS).

For reasons to be discussed below, we have perfor
two different types of simulations: In type I a complete simu-
lation for one temperature consists of many runs with diff
ent sequences of random numbers which produce the w
noise. The total integration time is divided into a first part
length t0 ~denoted as prerun! and a second part of lengtht
~denoted as main run!. We chooset0 in the order of 1000
which is larger than the saturation time and large enough
the vortex has no memory of the configuration from which
started; i.e., in every run we have at the timet0 a different
initial condition for the main run. Only the main runs a
used for the thermal average: the average timet, after which
the first transition of the vortex to the opposite polarizatio
occurs, is obtained from

N~ t !5N0e2t/t. ~56!

HereN0 andN are the number of runs in which the vorte
has made no transition untilt0 and t01t, respectively.t
must be compared with the inverse transition ratek215t th
from Eq. ~53!, because we work with a small damping p
rameterg50.002 ~Table I!. The agreement is rather goo
taking into account that we used a very crude model for
vortex core formed from only the four innermost spins.

We counted only the first transitions because in our the
we have calculated the escape rate from a metastable s
After the first transition the vortex is typically in a differen
dynamical state than before, thus the probability for the n
transition is expected to be different, too. In fact, we o
tained a total number of 870 transitions in 158 runs witht
54000 for T50.15; this means that the average transit
time is 917, which is about four times smaller than the fir
transition time 4286 in Table I.
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In a type-II simulation we only make one pre-run
length t0 , i.e., the main runs all start from the same initi
condition. By taking different lengthst0 we can see whethe
t depends ont0 and/or the initial condition. We performe
this type of simulations because we had some hints from
investigation of the variances35 that a certain vortex mode
might be gradually excited thermally which could trigger t
transition. The frequency of this mode is very low, name
Dv5v12v2 , wherev1,2 are the eigenfrequencies of tw
quasilocal modes of the circular system with one vortex39

v1,2 are identical to the frequencies of the cycloidal oscil
tions of the vortex trajectory around the mean path~see
above!.

However, our type-II simulations in Table I do not reve
a correlation between the lengtht0 of the prerun and the firs
transition timet. Nevertheless the values oft differ consid-
erably for the different simulations. Thus we conclude that
depends strongly on the initial condition, which is identic
for all main runs of one simulation. This conclusion is co
firmed by looking at the first 200 time units immediate
after the beginning of the main runs: e.g., in simulation n
7 about 20% of the vortices switched over to the other
larization, while in no. 6 no vortex did so~Fig. 3!. A closer
inspection of the initial spin configurations shows thatt de-
pends both on the position of the vortex center within
lattice cell and on the dynamical state of the vortex.

FIG. 3. Percentage of vortices which have not yet made a t
sition to the opposite polarization up to the timet of a type-II
simulation. The temperature isT50.15. The solid and dashed line
represent two sets of runs~no. 7 and 6 in Table I! with different
initial configurations~which arise from using two different length
t0 for the pre-run!. The dash-dotted line results from sampling t
transition times from the simulations no. 4–7 of Table I, omitti
the first 500 time units of each main run.



b

ve

.

r
in
in
lt
o
fo
d
m

-
b

y-
itz
nt

bed
s.
use

tex-
c-

by
is
tran-
e.,
ell

s-
s
1.5
er-
la-
rk

the

7018 PRB 59GAIDIDEI, KAMPPETER, MERTENS, AND BISHOP
An additional test of the above conclusion was made
leaving out the first 500 time units of each main run~dash-
dotted line in Fig. 3!. Then we expect that the vortices ha
no memory of their initial condition and the resultingt
should be the same as in the type-I simulations~within the
statistical errors!. In fact, this is confirmed by comparing no
8 with no. 2 in Table I.

V. CONCLUSION

In this work we used a very simplified Hamiltonian fo
the cores of both planar and nonplanar vortices. Add
white noise to the local fields in which the classical sp
precess we obtained a Landau-Lifshitz equation with mu
plicative stochastic forces. The stationary solution of the c
responding Fokker-Planck equation exhibits two maxima
the two possible polarizations of the nonplanar vortex an
saddle point for the planar vortex, if the anisotropy para
eter lies in a certain, temperature-dependent range.

We calculated the ratek for the transition from one po
larization to the opposite one. Our results were tested
long-time Langevin dynamics simulations of the full man
spin model at three temperatures well below the Kosterl
Thouless phase transition temperature. The agreeme
al

sa
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pn

gn

R
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ta

ta
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g
s
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r-
r
a
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-
is

rather good, considering that the vortex core was descri
only approximately by using only the four innermost spin
We did not make any tests for higher temperatures beca
the probability for the spontaneous appearance of a vor
antivortex pair in the vicinity becomes too large; the intera
tion with this pair could then influencek.

We emphasize that the above results were obtained
effectively averaging over many initial conditions. This
necessary because our simulations demonstrate that the
sition rate depends very strongly on the initial condition, i.
both on the position of the vortex center within a lattice c
and on the velocity of the vortex at this position.
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